ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm2 Unicode version

Theorem isprm2 10499
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 1nprm 10496 . . . . 5  |-  -.  1  e.  Prime
2 eleq1 2141 . . . . . 6  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
32biimpcd 157 . . . . 5  |-  ( P  e.  Prime  ->  ( P  =  1  ->  1  e.  Prime ) )
41, 3mtoi 622 . . . 4  |-  ( P  e.  Prime  ->  -.  P  =  1 )
54neqned 2252 . . 3  |-  ( P  e.  Prime  ->  P  =/=  1 )
65pm4.71i 383 . 2  |-  ( P  e.  Prime  <->  ( P  e. 
Prime  /\  P  =/=  1
) )
7 isprm 10491 . . . 4  |-  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
8 isprm2lem 10498 . . . . . . 7  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
9 eqss 3014 . . . . . . . . . . 11  |-  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } 
<->  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  /\  { 1 ,  P }  C_ 
{ n  e.  NN  |  n  ||  P }
) )
109imbi2i 224 . . . . . . . . . 10  |-  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } )  <->  ( P  e.  NN  ->  ( {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) ) )
11 1idssfct 10497 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } )
12 jcab 567 . . . . . . . . . . 11  |-  ( ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) )  <->  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  /\  ( P  e.  NN  ->  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) ) )
1311, 12mpbiran2 882 . . . . . . . . . 10  |-  ( ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) )  <->  ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1410, 13bitri 182 . . . . . . . . 9  |-  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } )  <->  ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1514pm5.74ri 179 . . . . . . . 8  |-  ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } 
<->  { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) )
1615adantr 270 . . . . . . 7  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }  <->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
178, 16bitrd 186 . . . . . 6  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1817expcom 114 . . . . 5  |-  ( P  =/=  1  ->  ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) ) )
1918pm5.32d 437 . . . 4  |-  ( P  =/=  1  ->  (
( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  ~~  2o )  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) ) )
207, 19syl5bb 190 . . 3  |-  ( P  =/=  1  ->  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) ) )
2120pm5.32ri 442 . 2  |-  ( ( P  e.  Prime  /\  P  =/=  1 )  <->  ( ( P  e.  NN  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  /\  P  =/=  1 ) )
22 ancom 262 . . . 4  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( P  =/=  1  /\  ( P  e.  NN  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) ) )
23 anass 393 . . . 4  |-  ( ( ( P  =/=  1  /\  P  e.  NN )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } )  <-> 
( P  =/=  1  /\  ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) ) )
2422, 23bitr4i 185 . . 3  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( ( P  =/=  1  /\  P  e.  NN )  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
25 ancom 262 . . . . 5  |-  ( ( P  =/=  1  /\  P  e.  NN )  <-> 
( P  e.  NN  /\  P  =/=  1 ) )
26 eluz2b3 8691 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  P  =/=  1 ) )
2725, 26bitr4i 185 . . . 4  |-  ( ( P  =/=  1  /\  P  e.  NN )  <-> 
P  e.  ( ZZ>= ` 
2 ) )
2827anbi1i 445 . . 3  |-  ( ( ( P  =/=  1  /\  P  e.  NN )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } )  <-> 
( P  e.  (
ZZ>= `  2 )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
29 dfss2 2988 . . . . 5  |-  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  <->  A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } ) )
30 breq1 3788 . . . . . . . . . 10  |-  ( n  =  z  ->  (
n  ||  P  <->  z  ||  P ) )
3130elrab 2749 . . . . . . . . 9  |-  ( z  e.  { n  e.  NN  |  n  ||  P }  <->  ( z  e.  NN  /\  z  ||  P ) )
32 vex 2604 . . . . . . . . . 10  |-  z  e. 
_V
3332elpr 3419 . . . . . . . . 9  |-  ( z  e.  { 1 ,  P }  <->  ( z  =  1  \/  z  =  P ) )
3431, 33imbi12i 237 . . . . . . . 8  |-  ( ( z  e.  { n  e.  NN  |  n  ||  P }  ->  z  e. 
{ 1 ,  P } )  <->  ( (
z  e.  NN  /\  z  ||  P )  -> 
( z  =  1  \/  z  =  P ) ) )
35 impexp 259 . . . . . . . 8  |-  ( ( ( z  e.  NN  /\  z  ||  P )  ->  ( z  =  1  \/  z  =  P ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3634, 35bitri 182 . . . . . . 7  |-  ( ( z  e.  { n  e.  NN  |  n  ||  P }  ->  z  e. 
{ 1 ,  P } )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3736albii 1399 . . . . . 6  |-  ( A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } )  <->  A. z ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
38 df-ral 2353 . . . . . 6  |-  ( A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  A. z ( z  e.  NN  ->  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3937, 38bitr4i 185 . . . . 5  |-  ( A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } )  <->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
4029, 39bitri 182 . . . 4  |-  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  <->  A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
4140anbi2i 444 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
4224, 28, 413bitri 204 . 2  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
436, 21, 423bitri 204 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661   A.wal 1282    = wceq 1284    e. wcel 1433    =/= wne 2245   A.wral 2348   {crab 2352    C_ wss 2973   {cpr 3399   class class class wbr 3785   ` cfv 4922   2oc2o 6018    ~~ cen 6242   1c1 6982   NNcn 8039   2c2 8089   ZZ>=cuz 8619    || cdvds 10195   Primecprime 10489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-prm 10490
This theorem is referenced by:  isprm3  10500  isprm4  10501  dvdsprime  10504  coprm  10523  isprm6  10526
  Copyright terms: Public domain W3C validator