| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mopick2 | Unicode version | ||
| Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1562. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| mopick2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbmo1 1979 |
. . . 4
| |
| 2 | hbe1 1424 |
. . . 4
| |
| 3 | 1, 2 | hban 1479 |
. . 3
|
| 4 | mopick 2019 |
. . . . . 6
| |
| 5 | 4 | ancld 318 |
. . . . 5
|
| 6 | 5 | anim1d 329 |
. . . 4
|
| 7 | df-3an 921 |
. . . 4
| |
| 8 | 6, 7 | syl6ibr 160 |
. . 3
|
| 9 | 3, 8 | eximdh 1542 |
. 2
|
| 10 | 9 | 3impia 1135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |