ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul32 Unicode version

Theorem mul32 7238
Description: Commutative/associative law. (Contributed by NM, 8-Oct-1999.)
Assertion
Ref Expression
mul32  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( A  x.  C )  x.  B ) )

Proof of Theorem mul32
StepHypRef Expression
1 mulcom 7102 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
21oveq2d 5548 . . 3  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C )
)  =  ( A  x.  ( C  x.  B ) ) )
323adant1 956 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( A  x.  ( C  x.  B )
) )
4 mulass 7104 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
5 mulass 7104 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  C
)  x.  B )  =  ( A  x.  ( C  x.  B
) ) )
653com23 1144 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
)  x.  B )  =  ( A  x.  ( C  x.  B
) ) )
73, 4, 63eqtr4d 2123 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( A  x.  C )  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433  (class class class)co 5532   CCcc 6979    x. cmul 6986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-mulcom 7077  ax-mulass 7079
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930  df-ov 5535
This theorem is referenced by:  mul4  7240  mul32i  7255  mul32d  7261  muldvds1  10220
  Copyright terms: Public domain W3C validator