ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0rf Unicode version

Theorem n0rf 3260
Description: An inhabited class is nonempty. Following the Definition of [Bauer], p. 483, we call a class  A nonempty if  A  =/=  (/) and inhabited if it has at least one element. In classical logic these two concepts are equivalent, for example see Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0r 3261 requires only that  x not be free in, rather than not occur in,  A. (Contributed by Jim Kingdon, 31-Jul-2018.)
Hypothesis
Ref Expression
n0rf.1  |-  F/_ x A
Assertion
Ref Expression
n0rf  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )

Proof of Theorem n0rf
StepHypRef Expression
1 exalim 1431 . 2  |-  ( E. x  x  e.  A  ->  -.  A. x  -.  x  e.  A )
2 n0rf.1 . . . . 5  |-  F/_ x A
3 nfcv 2219 . . . . 5  |-  F/_ x (/)
42, 3cleqf 2242 . . . 4  |-  ( A  =  (/)  <->  A. x ( x  e.  A  <->  x  e.  (/) ) )
5 noel 3255 . . . . . 6  |-  -.  x  e.  (/)
65nbn 647 . . . . 5  |-  ( -.  x  e.  A  <->  ( x  e.  A  <->  x  e.  (/) ) )
76albii 1399 . . . 4  |-  ( A. x  -.  x  e.  A  <->  A. x ( x  e.  A  <->  x  e.  (/) ) )
84, 7bitr4i 185 . . 3  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
98necon3abii 2281 . 2  |-  ( A  =/=  (/)  <->  -.  A. x  -.  x  e.  A
)
101, 9sylibr 132 1  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   F/_wnfc 2206    =/= wne 2245   (/)c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-v 2603  df-dif 2975  df-nul 3252
This theorem is referenced by:  n0r  3261  abn0r  3270
  Copyright terms: Public domain W3C validator