| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nf2 | Unicode version | ||
| Description: An alternate definition of df-nf 1390, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nf2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1390 |
. 2
| |
| 2 | nfa1 1474 |
. . . 4
| |
| 3 | 2 | nfri 1452 |
. . 3
|
| 4 | 3 | 19.23h 1427 |
. 2
|
| 5 | 1, 4 | bitri 182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: nf3 1599 nf4dc 1600 nf4r 1601 eusv2i 4205 |
| Copyright terms: Public domain | W3C validator |