![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nf2 | GIF version |
Description: An alternate definition of df-nf 1390, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nf2 | ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1390 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
2 | nfa1 1474 | . . . 4 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
3 | 2 | nfri 1452 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
4 | 3 | 19.23h 1427 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
5 | 1, 4 | bitri 182 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 Ⅎwnf 1389 ∃wex 1421 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 df-nf 1390 |
This theorem is referenced by: nf3 1599 nf4dc 1600 nf4r 1601 eusv2i 4205 |
Copyright terms: Public domain | W3C validator |