ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv2i Unicode version

Theorem eusv2i 4205
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusv2i  |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv2i
StepHypRef Expression
1 nfeu1 1952 . . 3  |-  F/ y E! y A. x  y  =  A
2 nfcvd 2220 . . . . . 6  |-  ( E! y A. x  y  =  A  ->  F/_ x
y )
3 eusvnf 4203 . . . . . 6  |-  ( E! y A. x  y  =  A  ->  F/_ x A )
42, 3nfeqd 2233 . . . . 5  |-  ( E! y A. x  y  =  A  ->  F/ x  y  =  A
)
5 nf2 1598 . . . . 5  |-  ( F/ x  y  =  A  <-> 
( E. x  y  =  A  ->  A. x  y  =  A )
)
64, 5sylib 120 . . . 4  |-  ( E! y A. x  y  =  A  ->  ( E. x  y  =  A  ->  A. x  y  =  A ) )
7 19.2 1569 . . . 4  |-  ( A. x  y  =  A  ->  E. x  y  =  A )
86, 7impbid1 140 . . 3  |-  ( E! y A. x  y  =  A  ->  ( E. x  y  =  A 
<-> 
A. x  y  =  A ) )
91, 8eubid 1948 . 2  |-  ( E! y A. x  y  =  A  ->  ( E! y E. x  y  =  A  <->  E! y A. x  y  =  A ) )
109ibir 175 1  |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1282    = wceq 1284   F/wnf 1389   E.wex 1421   E!weu 1941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-csb 2909
This theorem is referenced by:  eusv2nf  4206
  Copyright terms: Public domain W3C validator