ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffo Unicode version

Theorem nffo 5125
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nffo.1  |-  F/_ x F
nffo.2  |-  F/_ x A
nffo.3  |-  F/_ x B
Assertion
Ref Expression
nffo  |-  F/ x  F : A -onto-> B

Proof of Theorem nffo
StepHypRef Expression
1 df-fo 4928 . 2  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
2 nffo.1 . . . 4  |-  F/_ x F
3 nffo.2 . . . 4  |-  F/_ x A
42, 3nffn 5015 . . 3  |-  F/ x  F  Fn  A
52nfrn 4597 . . . 4  |-  F/_ x ran  F
6 nffo.3 . . . 4  |-  F/_ x B
75, 6nfeq 2226 . . 3  |-  F/ x ran  F  =  B
84, 7nfan 1497 . 2  |-  F/ x
( F  Fn  A  /\  ran  F  =  B )
91, 8nfxfr 1403 1  |-  F/ x  F : A -onto-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284   F/wnf 1389   F/_wnfc 2206   ran crn 4364    Fn wfn 4917   -onto->wfo 4920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-fo 4928
This theorem is referenced by:  nff1o  5144
  Copyright terms: Public domain W3C validator