![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfi | Unicode version |
Description: Deduce that ![]() ![]() |
Ref | Expression |
---|---|
nfi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1390 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbir 1382 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 |
This theorem depends on definitions: df-bi 115 df-nf 1390 |
This theorem is referenced by: nfth 1393 nfnth 1394 nfe1 1425 nfdh 1457 nfv 1461 nfa1 1474 nfan1 1496 nfim1 1503 nfor 1506 nfal 1508 nfex 1568 nfae 1647 cbv3h 1671 nfs1 1730 nfs1v 1856 hbsb 1864 sbco2h 1879 hbsbd 1899 dvelimALT 1927 dvelimfv 1928 hbeu 1962 hbeud 1963 eu3h 1986 mo3h 1994 nfsab1 2071 nfsab 2073 nfcii 2210 nfcri 2213 |
Copyright terms: Public domain | W3C validator |