![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfraldxy | Unicode version |
Description: Not-free for restricted
universal quantification where ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfraldxy.2 |
![]() ![]() ![]() ![]() |
nfraldxy.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nfraldxy.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfraldxy |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2353 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfraldxy.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | nfcv 2219 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | 3 | a1i 9 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | nfraldxy.3 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | nfeld 2234 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | nfraldxy.4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | nfimd 1517 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2, 8 | nfald 1683 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 1, 9 | nfxfrd 1404 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 |
This theorem is referenced by: nfraldya 2400 nfralxy 2402 |
Copyright terms: Public domain | W3C validator |