| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrexdxy | Unicode version | ||
| Description: Not-free for restricted
existential quantification where |
| Ref | Expression |
|---|---|
| nfraldxy.2 |
|
| nfraldxy.3 |
|
| nfraldxy.4 |
|
| Ref | Expression |
|---|---|
| nfrexdxy |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2354 |
. 2
| |
| 2 | nfraldxy.2 |
. . 3
| |
| 3 | nfcv 2219 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | nfraldxy.3 |
. . . . 5
| |
| 6 | 4, 5 | nfeld 2234 |
. . . 4
|
| 7 | nfraldxy.4 |
. . . 4
| |
| 8 | 6, 7 | nfand 1500 |
. . 3
|
| 9 | 2, 8 | nfexd 1684 |
. 2
|
| 10 | 1, 9 | nfxfrd 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 |
| This theorem is referenced by: nfrexdya 2401 nfrexxy 2403 nfunid 3608 strcollnft 10779 |
| Copyright terms: Public domain | W3C validator |