ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeld Unicode version

Theorem nfeld 2234
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1  |-  ( ph  -> 
F/_ x A )
nfeqd.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfeld  |-  ( ph  ->  F/ x  A  e.  B )

Proof of Theorem nfeld
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-clel 2077 . 2  |-  ( A  e.  B  <->  E. y
( y  =  A  /\  y  e.  B
) )
2 nfv 1461 . . 3  |-  F/ y
ph
3 nfcvd 2220 . . . . 5  |-  ( ph  -> 
F/_ x y )
4 nfeqd.1 . . . . 5  |-  ( ph  -> 
F/_ x A )
53, 4nfeqd 2233 . . . 4  |-  ( ph  ->  F/ x  y  =  A )
6 nfeqd.2 . . . . 5  |-  ( ph  -> 
F/_ x B )
76nfcrd 2232 . . . 4  |-  ( ph  ->  F/ x  y  e.  B )
85, 7nfand 1500 . . 3  |-  ( ph  ->  F/ x ( y  =  A  /\  y  e.  B ) )
92, 8nfexd 1684 . 2  |-  ( ph  ->  F/ x E. y
( y  =  A  /\  y  e.  B
) )
101, 9nfxfrd 1404 1  |-  ( ph  ->  F/ x  A  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   F/wnf 1389   E.wex 1421    e. wcel 1433   F/_wnfc 2206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-cleq 2074  df-clel 2077  df-nfc 2208
This theorem is referenced by:  nfneld  2347  nfraldxy  2398  nfrexdxy  2399  nfreudxy  2527  nfsbc1d  2831  nfsbcd  2834  sbcrext  2891  nfbrd  3828  nfriotadxy  5496
  Copyright terms: Public domain W3C validator