| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfrexdya | Unicode version | ||
| Description: Not-free for restricted
existential quantification where |
| Ref | Expression |
|---|---|
| nfraldya.2 |
|
| nfraldya.3 |
|
| nfraldya.4 |
|
| Ref | Expression |
|---|---|
| nfrexdya |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2354 |
. 2
| |
| 2 | sban 1870 |
. . . . . 6
| |
| 3 | clelsb3 2183 |
. . . . . . 7
| |
| 4 | 3 | anbi1i 445 |
. . . . . 6
|
| 5 | 2, 4 | bitri 182 |
. . . . 5
|
| 6 | 5 | exbii 1536 |
. . . 4
|
| 7 | nfv 1461 |
. . . . 5
| |
| 8 | 7 | sb8e 1778 |
. . . 4
|
| 9 | df-rex 2354 |
. . . 4
| |
| 10 | 6, 8, 9 | 3bitr4i 210 |
. . 3
|
| 11 | nfv 1461 |
. . . 4
| |
| 12 | nfraldya.3 |
. . . 4
| |
| 13 | nfraldya.2 |
. . . . 5
| |
| 14 | nfraldya.4 |
. . . . 5
| |
| 15 | 13, 14 | nfsbd 1892 |
. . . 4
|
| 16 | 11, 12, 15 | nfrexdxy 2399 |
. . 3
|
| 17 | 10, 16 | nfxfrd 1404 |
. 2
|
| 18 | 1, 17 | nfxfrd 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 |
| This theorem is referenced by: nfrexya 2405 |
| Copyright terms: Public domain | W3C validator |