ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfwe Unicode version

Theorem nfwe 4110
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfwe.r  |-  F/_ x R
nfwe.a  |-  F/_ x A
Assertion
Ref Expression
nfwe  |-  F/ x  R  We  A

Proof of Theorem nfwe
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wetr 4089 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( (
a R b  /\  b R c )  -> 
a R c ) ) )
2 nfwe.r . . . 4  |-  F/_ x R
3 nfwe.a . . . 4  |-  F/_ x A
42, 3nffr 4104 . . 3  |-  F/ x  R  Fr  A
5 nfcv 2219 . . . . . . . . 9  |-  F/_ x
a
6 nfcv 2219 . . . . . . . . 9  |-  F/_ x
b
75, 2, 6nfbr 3829 . . . . . . . 8  |-  F/ x  a R b
8 nfcv 2219 . . . . . . . . 9  |-  F/_ x
c
96, 2, 8nfbr 3829 . . . . . . . 8  |-  F/ x  b R c
107, 9nfan 1497 . . . . . . 7  |-  F/ x
( a R b  /\  b R c )
115, 2, 8nfbr 3829 . . . . . . 7  |-  F/ x  a R c
1210, 11nfim 1504 . . . . . 6  |-  F/ x
( ( a R b  /\  b R c )  ->  a R c )
133, 12nfralxy 2402 . . . . 5  |-  F/ x A. c  e.  A  ( ( a R b  /\  b R c )  ->  a R c )
143, 13nfralxy 2402 . . . 4  |-  F/ x A. b  e.  A  A. c  e.  A  ( ( a R b  /\  b R c )  ->  a R c )
153, 14nfralxy 2402 . . 3  |-  F/ x A. a  e.  A  A. b  e.  A  A. c  e.  A  ( ( a R b  /\  b R c )  ->  a R c )
164, 15nfan 1497 . 2  |-  F/ x
( R  Fr  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( ( a R b  /\  b R c )  ->  a R c ) )
171, 16nfxfr 1403 1  |-  F/ x  R  We  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   F/wnf 1389   F/_wnfc 2206   A.wral 2348   class class class wbr 3785    Fr wfr 4083    We wwe 4085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-frfor 4086  df-frind 4087  df-wetr 4089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator