![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notnot | Unicode version |
Description: Double negation introduction. Theorem *2.12 of [WhiteheadRussell] p. 101. This one holds for all propositions, but its converse only holds for decidable propositions (see notnotrdc 784). (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 2-Mar-2013.) |
Ref | Expression |
---|---|
notnot |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | con2i 589 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 576 ax-in2 577 |
This theorem is referenced by: notnotd 592 con3d 593 notnoti 606 pm3.24 659 notnotnot 660 biortn 696 dcn 779 con1dc 786 notnotbdc 799 eueq2dc 2765 ddifstab 3104 xrlttri3 8872 nltpnft 8884 ngtmnft 8885 bdnthALT 10626 |
Copyright terms: Public domain | W3C validator |