| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eueq2dc | Unicode version | ||
| Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| eueq2dc.1 |
|
| eueq2dc.2 |
|
| Ref | Expression |
|---|---|
| eueq2dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 776 |
. 2
| |
| 2 | notnot 591 |
. . . . 5
| |
| 3 | eueq2dc.1 |
. . . . . . 7
| |
| 4 | 3 | eueq1 2764 |
. . . . . 6
|
| 5 | euanv 1998 |
. . . . . . 7
| |
| 6 | 5 | biimpri 131 |
. . . . . 6
|
| 7 | 4, 6 | mpan2 415 |
. . . . 5
|
| 8 | euorv 1968 |
. . . . 5
| |
| 9 | 2, 7, 8 | syl2anc 403 |
. . . 4
|
| 10 | orcom 679 |
. . . . . 6
| |
| 11 | 2 | bianfd 889 |
. . . . . . 7
|
| 12 | 11 | orbi2d 736 |
. . . . . 6
|
| 13 | 10, 12 | syl5bb 190 |
. . . . 5
|
| 14 | 13 | eubidv 1949 |
. . . 4
|
| 15 | 9, 14 | mpbid 145 |
. . 3
|
| 16 | eueq2dc.2 |
. . . . . . 7
| |
| 17 | 16 | eueq1 2764 |
. . . . . 6
|
| 18 | euanv 1998 |
. . . . . . 7
| |
| 19 | 18 | biimpri 131 |
. . . . . 6
|
| 20 | 17, 19 | mpan2 415 |
. . . . 5
|
| 21 | euorv 1968 |
. . . . 5
| |
| 22 | 20, 21 | mpdan 412 |
. . . 4
|
| 23 | id 19 |
. . . . . . 7
| |
| 24 | 23 | bianfd 889 |
. . . . . 6
|
| 25 | 24 | orbi1d 737 |
. . . . 5
|
| 26 | 25 | eubidv 1949 |
. . . 4
|
| 27 | 22, 26 | mpbid 145 |
. . 3
|
| 28 | 15, 27 | jaoi 668 |
. 2
|
| 29 | 1, 28 | sylbi 119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |