| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrlttri3 | Unicode version | ||
| Description: Extended real version of lttri3 7191. (Contributed by NM, 9-Feb-2006.) |
| Ref | Expression |
|---|---|
| xrlttri3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 8850 |
. 2
| |
| 2 | elxr 8850 |
. 2
| |
| 3 | lttri3 7191 |
. . . . . 6
| |
| 4 | 3 | ancoms 264 |
. . . . 5
|
| 5 | renepnf 7166 |
. . . . . . . . . 10
| |
| 6 | 5 | adantr 270 |
. . . . . . . . 9
|
| 7 | neeq2 2259 |
. . . . . . . . . 10
| |
| 8 | 7 | adantl 271 |
. . . . . . . . 9
|
| 9 | 6, 8 | mpbird 165 |
. . . . . . . 8
|
| 10 | 9 | necomd 2331 |
. . . . . . 7
|
| 11 | 10 | neneqd 2266 |
. . . . . 6
|
| 12 | ltpnf 8856 |
. . . . . . . . 9
| |
| 13 | 12 | adantr 270 |
. . . . . . . 8
|
| 14 | breq2 3789 |
. . . . . . . . 9
| |
| 15 | 14 | adantl 271 |
. . . . . . . 8
|
| 16 | 13, 15 | mpbird 165 |
. . . . . . 7
|
| 17 | notnot 591 |
. . . . . . . . 9
| |
| 18 | 17 | olcs 687 |
. . . . . . . 8
|
| 19 | ioran 701 |
. . . . . . . 8
| |
| 20 | 18, 19 | sylnib 633 |
. . . . . . 7
|
| 21 | 16, 20 | syl 14 |
. . . . . 6
|
| 22 | 11, 21 | 2falsed 650 |
. . . . 5
|
| 23 | renemnf 7167 |
. . . . . . . . . 10
| |
| 24 | 23 | adantr 270 |
. . . . . . . . 9
|
| 25 | neeq2 2259 |
. . . . . . . . . 10
| |
| 26 | 25 | adantl 271 |
. . . . . . . . 9
|
| 27 | 24, 26 | mpbird 165 |
. . . . . . . 8
|
| 28 | 27 | necomd 2331 |
. . . . . . 7
|
| 29 | 28 | neneqd 2266 |
. . . . . 6
|
| 30 | mnflt 8858 |
. . . . . . . . 9
| |
| 31 | 30 | adantr 270 |
. . . . . . . 8
|
| 32 | breq1 3788 |
. . . . . . . . 9
| |
| 33 | 32 | adantl 271 |
. . . . . . . 8
|
| 34 | 31, 33 | mpbird 165 |
. . . . . . 7
|
| 35 | orc 665 |
. . . . . . 7
| |
| 36 | oranim 840 |
. . . . . . 7
| |
| 37 | 34, 35, 36 | 3syl 17 |
. . . . . 6
|
| 38 | 29, 37 | 2falsed 650 |
. . . . 5
|
| 39 | 4, 22, 38 | 3jaodan 1237 |
. . . 4
|
| 40 | 39 | ancoms 264 |
. . 3
|
| 41 | renepnf 7166 |
. . . . . . . . 9
| |
| 42 | 41 | adantl 271 |
. . . . . . . 8
|
| 43 | neeq2 2259 |
. . . . . . . . 9
| |
| 44 | 43 | adantr 270 |
. . . . . . . 8
|
| 45 | 42, 44 | mpbird 165 |
. . . . . . 7
|
| 46 | 45 | neneqd 2266 |
. . . . . 6
|
| 47 | ltpnf 8856 |
. . . . . . . . 9
| |
| 48 | 47 | adantl 271 |
. . . . . . . 8
|
| 49 | breq2 3789 |
. . . . . . . . 9
| |
| 50 | 49 | adantr 270 |
. . . . . . . 8
|
| 51 | 48, 50 | mpbird 165 |
. . . . . . 7
|
| 52 | 51, 35, 36 | 3syl 17 |
. . . . . 6
|
| 53 | 46, 52 | 2falsed 650 |
. . . . 5
|
| 54 | eqtr3 2100 |
. . . . . . 7
| |
| 55 | 54 | eqcomd 2086 |
. . . . . 6
|
| 56 | pnfxr 8846 |
. . . . . . . . 9
| |
| 57 | xrltnr 8855 |
. . . . . . . . 9
| |
| 58 | 56, 57 | ax-mp 7 |
. . . . . . . 8
|
| 59 | breq12 3790 |
. . . . . . . . 9
| |
| 60 | 59 | ancoms 264 |
. . . . . . . 8
|
| 61 | 58, 60 | mtbiri 632 |
. . . . . . 7
|
| 62 | breq12 3790 |
. . . . . . . 8
| |
| 63 | 58, 62 | mtbiri 632 |
. . . . . . 7
|
| 64 | 61, 63 | jca 300 |
. . . . . 6
|
| 65 | 55, 64 | 2thd 173 |
. . . . 5
|
| 66 | mnfnepnf 8852 |
. . . . . . . . 9
| |
| 67 | eqeq12 2093 |
. . . . . . . . . 10
| |
| 68 | 67 | necon3bid 2286 |
. . . . . . . . 9
|
| 69 | 66, 68 | mpbiri 166 |
. . . . . . . 8
|
| 70 | 69 | ancoms 264 |
. . . . . . 7
|
| 71 | 70 | neneqd 2266 |
. . . . . 6
|
| 72 | mnfltpnf 8860 |
. . . . . . . . 9
| |
| 73 | breq12 3790 |
. . . . . . . . 9
| |
| 74 | 72, 73 | mpbiri 166 |
. . . . . . . 8
|
| 75 | 74 | ancoms 264 |
. . . . . . 7
|
| 76 | 75, 35, 36 | 3syl 17 |
. . . . . 6
|
| 77 | 71, 76 | 2falsed 650 |
. . . . 5
|
| 78 | 53, 65, 77 | 3jaodan 1237 |
. . . 4
|
| 79 | 78 | ancoms 264 |
. . 3
|
| 80 | renemnf 7167 |
. . . . . . . . 9
| |
| 81 | 80 | adantl 271 |
. . . . . . . 8
|
| 82 | neeq2 2259 |
. . . . . . . . 9
| |
| 83 | 82 | adantr 270 |
. . . . . . . 8
|
| 84 | 81, 83 | mpbird 165 |
. . . . . . 7
|
| 85 | 84 | neneqd 2266 |
. . . . . 6
|
| 86 | mnflt 8858 |
. . . . . . . . 9
| |
| 87 | 86 | adantl 271 |
. . . . . . . 8
|
| 88 | breq1 3788 |
. . . . . . . . 9
| |
| 89 | 88 | adantr 270 |
. . . . . . . 8
|
| 90 | 87, 89 | mpbird 165 |
. . . . . . 7
|
| 91 | 90, 20 | syl 14 |
. . . . . 6
|
| 92 | 85, 91 | 2falsed 650 |
. . . . 5
|
| 93 | 66 | neii 2247 |
. . . . . . . . . 10
|
| 94 | eqeq12 2093 |
. . . . . . . . . 10
| |
| 95 | 93, 94 | mtbiri 632 |
. . . . . . . . 9
|
| 96 | 95 | neneqad 2324 |
. . . . . . . 8
|
| 97 | 96 | necomd 2331 |
. . . . . . 7
|
| 98 | 97 | neneqd 2266 |
. . . . . 6
|
| 99 | breq12 3790 |
. . . . . . . 8
| |
| 100 | 72, 99 | mpbiri 166 |
. . . . . . 7
|
| 101 | 100, 20 | syl 14 |
. . . . . 6
|
| 102 | 98, 101 | 2falsed 650 |
. . . . 5
|
| 103 | eqtr3 2100 |
. . . . . . 7
| |
| 104 | 103 | ancoms 264 |
. . . . . 6
|
| 105 | mnfxr 8848 |
. . . . . . . . 9
| |
| 106 | xrltnr 8855 |
. . . . . . . . 9
| |
| 107 | 105, 106 | ax-mp 7 |
. . . . . . . 8
|
| 108 | breq12 3790 |
. . . . . . . . 9
| |
| 109 | 108 | ancoms 264 |
. . . . . . . 8
|
| 110 | 107, 109 | mtbiri 632 |
. . . . . . 7
|
| 111 | breq12 3790 |
. . . . . . . 8
| |
| 112 | 107, 111 | mtbiri 632 |
. . . . . . 7
|
| 113 | 110, 112 | jca 300 |
. . . . . 6
|
| 114 | 104, 113 | 2thd 173 |
. . . . 5
|
| 115 | 92, 102, 114 | 3jaodan 1237 |
. . . 4
|
| 116 | 115 | ancoms 264 |
. . 3
|
| 117 | 40, 79, 116 | 3jaodan 1237 |
. 2
|
| 118 | 1, 2, 117 | syl2anb 285 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 ax-pre-apti 7091 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 |
| This theorem is referenced by: xrletri3 8875 iccid 8948 |
| Copyright terms: Public domain | W3C validator |