ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprc Unicode version

Theorem opprc 3591
Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )

Proof of Theorem opprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-op 3407 . 2  |-  <. A ,  B >.  =  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
2 3simpa 935 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } )  ->  ( A  e.  _V  /\  B  e.  _V ) )
32con3i 594 . . . 4  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) )
43alrimiv 1795 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  A. x  -.  ( A  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { A } ,  { A ,  B } } ) )
5 abeq0 3275 . . 3  |-  ( { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { A } ,  { A ,  B } } ) }  =  (/)  <->  A. x  -.  ( A  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { A } ,  { A ,  B } } ) )
64, 5sylibr 132 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }  =  (/) )
71, 6syl5eq 2125 1  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    /\ w3a 919   A.wal 1282    = wceq 1284    e. wcel 1433   {cab 2067   _Vcvv 2601   (/)c0 3251   {csn 3398   {cpr 3399   <.cop 3401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-nul 3252  df-op 3407
This theorem is referenced by:  opprc1  3592  opprc2  3593  ovprc  5560
  Copyright terms: Public domain W3C validator