| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > posng | Unicode version | ||
| Description: Partial ordering of a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| posng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-po 4051 |
. 2
| |
| 2 | breq2 3789 |
. . . . . . . . . . 11
| |
| 3 | 2 | anbi2d 451 |
. . . . . . . . . 10
|
| 4 | breq2 3789 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | imbi12d 232 |
. . . . . . . . 9
|
| 6 | 5 | anbi2d 451 |
. . . . . . . 8
|
| 7 | 6 | ralsng 3433 |
. . . . . . 7
|
| 8 | 7 | ralbidv 2368 |
. . . . . 6
|
| 9 | simpl 107 |
. . . . . . . . . 10
| |
| 10 | breq2 3789 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | syl5ib 152 |
. . . . . . . . 9
|
| 12 | 11 | biantrud 298 |
. . . . . . . 8
|
| 13 | 12 | bicomd 139 |
. . . . . . 7
|
| 14 | 13 | ralsng 3433 |
. . . . . 6
|
| 15 | 8, 14 | bitrd 186 |
. . . . 5
|
| 16 | 15 | ralbidv 2368 |
. . . 4
|
| 17 | breq12 3790 |
. . . . . . 7
| |
| 18 | 17 | anidms 389 |
. . . . . 6
|
| 19 | 18 | notbid 624 |
. . . . 5
|
| 20 | 19 | ralsng 3433 |
. . . 4
|
| 21 | 16, 20 | bitrd 186 |
. . 3
|
| 22 | 21 | adantl 271 |
. 2
|
| 23 | 1, 22 | syl5bb 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-po 4051 |
| This theorem is referenced by: sosng 4431 |
| Copyright terms: Public domain | W3C validator |