ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwsnss Unicode version

Theorem pwsnss 3595
Description: The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
pwsnss  |-  { (/) ,  { A } }  C_ 
~P { A }

Proof of Theorem pwsnss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sssnr 3545 . . 3  |-  ( ( x  =  (/)  \/  x  =  { A } )  ->  x  C_  { A } )
21ss2abi 3066 . 2  |-  { x  |  ( x  =  (/)  \/  x  =  { A } ) }  C_  { x  |  x  C_  { A } }
3 dfpr2 3417 . 2  |-  { (/) ,  { A } }  =  { x  |  ( x  =  (/)  \/  x  =  { A } ) }
4 df-pw 3384 . 2  |-  ~P { A }  =  {
x  |  x  C_  { A } }
52, 3, 43sstr4i 3038 1  |-  { (/) ,  { A } }  C_ 
~P { A }
Colors of variables: wff set class
Syntax hints:    \/ wo 661    = wceq 1284   {cab 2067    C_ wss 2973   (/)c0 3251   ~Pcpw 3382   {csn 3398   {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405
This theorem is referenced by:  pwpw0ss  3596
  Copyright terms: Public domain W3C validator