ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwunim Unicode version

Theorem pwunim 4041
Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by Jim Kingdon, 30-Sep-2018.)
Assertion
Ref Expression
pwunim  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
) )

Proof of Theorem pwunim
StepHypRef Expression
1 pwssunim 4039 . . 3  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
) )
2 pwunss 4038 . . . 4  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
32biantru 296 . . 3  |-  ( ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
)  <->  ( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
41, 3sylib 120 . 2  |-  ( ( A  C_  B  \/  B  C_  A )  -> 
( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
5 eqss 3014 . 2  |-  ( ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
)  <->  ( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
64, 5sylibr 132 1  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    = wceq 1284    u. cun 2971    C_ wss 2973   ~Pcpw 3382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator