ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwv Unicode version

Theorem pwv 3600
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
pwv  |-  ~P _V  =  _V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3019 . . . 4  |-  x  C_  _V
2 vex 2604 . . . . 5  |-  x  e. 
_V
32elpw 3388 . . . 4  |-  ( x  e.  ~P _V  <->  x  C_  _V )
41, 3mpbir 144 . . 3  |-  x  e. 
~P _V
54, 22th 172 . 2  |-  ( x  e.  ~P _V  <->  x  e.  _V )
65eqriv 2078 1  |-  ~P _V  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1284    e. wcel 1433   _Vcvv 2601    C_ wss 2973   ~Pcpw 3382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384
This theorem is referenced by:  univ  4225
  Copyright terms: Public domain W3C validator