![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqriv | Unicode version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqriv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqriv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2075 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqriv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbir 1382 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 |
This theorem is referenced by: eqid 2081 sb8ab 2200 cbvab 2201 vjust 2602 nfccdeq 2813 difeqri 3092 uneqri 3114 incom 3158 ineqri 3159 difin 3201 invdif 3206 indif 3207 difundi 3216 indifdir 3220 pwv 3600 uniun 3620 intun 3667 intpr 3668 iuncom 3684 iuncom4 3685 iun0 3734 0iun 3735 iunin2 3741 iunun 3755 iunxun 3756 iunxiun 3757 iinpw 3763 inuni 3930 unidif0 3941 unipw 3972 snnex 4199 unon 4255 xpiundi 4416 xpiundir 4417 0xp 4438 iunxpf 4502 cnvuni 4539 dmiun 4562 dmuni 4563 epini 4716 rniun 4754 cnvresima 4830 imaco 4846 rnco 4847 dfmpt3 5041 imaiun 5420 opabex3d 5768 opabex3 5769 ecid 6192 qsid 6194 dfz2 8420 infssuzex 10345 1nprm 10496 |
Copyright terms: Public domain | W3C validator |