ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralab Unicode version

Theorem ralab 2752
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralab  |-  ( A. x  e.  { y  |  ph } ch  <->  A. x
( ps  ->  ch ) )
Distinct variable groups:    x, y    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( x, y)

Proof of Theorem ralab
StepHypRef Expression
1 df-ral 2353 . 2  |-  ( A. x  e.  { y  |  ph } ch  <->  A. x
( x  e.  {
y  |  ph }  ->  ch ) )
2 vex 2604 . . . . 5  |-  x  e. 
_V
3 ralab.1 . . . . 5  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
42, 3elab 2738 . . . 4  |-  ( x  e.  { y  | 
ph }  <->  ps )
54imbi1i 236 . . 3  |-  ( ( x  e.  { y  |  ph }  ->  ch )  <->  ( ps  ->  ch ) )
65albii 1399 . 2  |-  ( A. x ( x  e. 
{ y  |  ph }  ->  ch )  <->  A. x
( ps  ->  ch ) )
71, 6bitri 182 1  |-  ( A. x  e.  { y  |  ph } ch  <->  A. x
( ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282    e. wcel 1433   {cab 2067   A.wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603
This theorem is referenced by:  funcnvuni  4988  ralrnmpt2  5635  pitonn  7016
  Copyright terms: Public domain W3C validator