| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrnmpt2 | Unicode version | ||
| Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| rngop.1 |
|
| ralrnmpt2.2 |
|
| Ref | Expression |
|---|---|
| ralrnmpt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 |
. . . . 5
| |
| 2 | 1 | rnmpt2 5631 |
. . . 4
|
| 3 | 2 | raleqi 2553 |
. . 3
|
| 4 | eqeq1 2087 |
. . . . 5
| |
| 5 | 4 | 2rexbidv 2391 |
. . . 4
|
| 6 | 5 | ralab 2752 |
. . 3
|
| 7 | ralcom4 2621 |
. . . 4
| |
| 8 | r19.23v 2469 |
. . . . 5
| |
| 9 | 8 | albii 1399 |
. . . 4
|
| 10 | 7, 9 | bitr2i 183 |
. . 3
|
| 11 | 3, 6, 10 | 3bitri 204 |
. 2
|
| 12 | ralcom4 2621 |
. . . . . 6
| |
| 13 | r19.23v 2469 |
. . . . . . 7
| |
| 14 | 13 | albii 1399 |
. . . . . 6
|
| 15 | 12, 14 | bitri 182 |
. . . . 5
|
| 16 | nfv 1461 |
. . . . . . . 8
| |
| 17 | ralrnmpt2.2 |
. . . . . . . 8
| |
| 18 | 16, 17 | ceqsalg 2627 |
. . . . . . 7
|
| 19 | 18 | ralimi 2426 |
. . . . . 6
|
| 20 | ralbi 2489 |
. . . . . 6
| |
| 21 | 19, 20 | syl 14 |
. . . . 5
|
| 22 | 15, 21 | syl5bbr 192 |
. . . 4
|
| 23 | 22 | ralimi 2426 |
. . 3
|
| 24 | ralbi 2489 |
. . 3
| |
| 25 | 23, 24 | syl 14 |
. 2
|
| 26 | 11, 25 | syl5bb 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-cnv 4371 df-dm 4373 df-rn 4374 df-oprab 5536 df-mpt2 5537 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |