ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgeq1 Unicode version

Theorem rdgeq1 5981
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq1  |-  ( F  =  G  ->  rec ( F ,  A )  =  rec ( G ,  A ) )

Proof of Theorem rdgeq1
Dummy variables  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5197 . . . . . 6  |-  ( F  =  G  ->  ( F `  ( g `  x ) )  =  ( G `  (
g `  x )
) )
21iuneq2d 3703 . . . . 5  |-  ( F  =  G  ->  U_ x  e.  dom  g ( F `
 ( g `  x ) )  = 
U_ x  e.  dom  g ( G `  ( g `  x
) ) )
32uneq2d 3126 . . . 4  |-  ( F  =  G  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  =  ( A  u.  U_ x  e.  dom  g
( G `  (
g `  x )
) ) )
43mpteq2dv 3869 . . 3  |-  ( F  =  G  ->  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( G `
 ( g `  x ) ) ) ) )
5 recseq 5944 . . 3  |-  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( G `
 ( g `  x ) ) ) )  -> recs ( (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )  = recs (
( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( G `
 ( g `  x ) ) ) ) ) )
64, 5syl 14 . 2  |-  ( F  =  G  -> recs ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )  = recs (
( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( G `
 ( g `  x ) ) ) ) ) )
7 df-irdg 5980 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
8 df-irdg 5980 . 2  |-  rec ( G ,  A )  = recs ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( G `  (
g `  x )
) ) ) )
96, 7, 83eqtr4g 2138 1  |-  ( F  =  G  ->  rec ( F ,  A )  =  rec ( G ,  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284   _Vcvv 2601    u. cun 2971   U_ciun 3678    |-> cmpt 3839   dom cdm 4363   ` cfv 4922  recscrecs 5942   reccrdg 5979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-iota 4887  df-fv 4930  df-recs 5943  df-irdg 5980
This theorem is referenced by:  omv  6058  oeiv  6059
  Copyright terms: Public domain W3C validator