ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiv Unicode version

Theorem oeiv 6059
Description: Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
oeiv  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A𝑜  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem oeiv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6031 . . 3  |-  1o  e.  On
2 vex 2604 . . . . . . 7  |-  x  e. 
_V
3 omexg 6054 . . . . . . 7  |-  ( ( x  e.  _V  /\  A  e.  On )  ->  ( x  .o  A
)  e.  _V )
42, 3mpan 414 . . . . . 6  |-  ( A  e.  On  ->  (
x  .o  A )  e.  _V )
54ralrimivw 2435 . . . . 5  |-  ( A  e.  On  ->  A. x  e.  _V  ( x  .o  A )  e.  _V )
6 eqid 2081 . . . . . 6  |-  ( x  e.  _V  |->  ( x  .o  A ) )  =  ( x  e. 
_V  |->  ( x  .o  A ) )
76fnmpt 5045 . . . . 5  |-  ( A. x  e.  _V  (
x  .o  A )  e.  _V  ->  (
x  e.  _V  |->  ( x  .o  A ) )  Fn  _V )
85, 7syl 14 . . . 4  |-  ( A  e.  On  ->  (
x  e.  _V  |->  ( x  .o  A ) )  Fn  _V )
9 rdgexggg 5987 . . . 4  |-  ( ( ( x  e.  _V  |->  ( x  .o  A
) )  Fn  _V  /\  1o  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  e. 
_V )
108, 9syl3an1 1202 . . 3  |-  ( ( A  e.  On  /\  1o  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  e.  _V )
111, 10mp3an2 1256 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  e. 
_V )
12 oveq2 5540 . . . . . 6  |-  ( y  =  A  ->  (
x  .o  y )  =  ( x  .o  A ) )
1312mpteq2dv 3869 . . . . 5  |-  ( y  =  A  ->  (
x  e.  _V  |->  ( x  .o  y ) )  =  ( x  e.  _V  |->  ( x  .o  A ) ) )
14 rdgeq1 5981 . . . . 5  |-  ( ( x  e.  _V  |->  ( x  .o  y ) )  =  ( x  e.  _V  |->  ( x  .o  A ) )  ->  rec ( ( x  e.  _V  |->  ( x  .o  y ) ) ,  1o )  =  rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) )
1513, 14syl 14 . . . 4  |-  ( y  =  A  ->  rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o )  =  rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) )
1615fveq1d 5200 . . 3  |-  ( y  =  A  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o ) `  z
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
) )
17 fveq2 5198 . . 3  |-  ( z  =  B  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) )
18 df-oexpi 6030 . . 3  |-𝑜  =  ( y  e.  On ,  z  e.  On  |->  ( rec (
( x  e.  _V  |->  ( x  .o  y
) ) ,  1o ) `  z )
)
1916, 17, 18ovmpt2g 5655 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  e.  _V )  ->  ( A𝑜  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
2011, 19mpd3an3 1269 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A𝑜  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348   _Vcvv 2601    |-> cmpt 3839   Oncon0 4118    Fn wfn 4917   ` cfv 4922  (class class class)co 5532   reccrdg 5979   1oc1o 6017    .o comu 6022   ↑𝑜 coei 6023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-oexpi 6030
This theorem is referenced by:  oei0  6062  oeicl  6065
  Copyright terms: Public domain W3C validator