ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  repizf2 Unicode version

Theorem repizf2 3936
Description: Replacement. This version of replacement is stronger than repizf 3894 in the sense that  ph does not need to map all values of  x in  w to a value of  y. The resulting set contains those elements for which there is a value of  y and in that sense, this theorem combines repizf 3894 with ax-sep 3896. Another variation would be  A. x  e.  w E* y ph  ->  { y  |  E. x ( x  e.  w  /\  ph ) }  e.  _V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.)
Hypothesis
Ref Expression
repizf2.1  |-  F/ z
ph
Assertion
Ref Expression
repizf2  |-  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph )
Distinct variable group:    x, y, z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem repizf2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 vex 2604 . . 3  |-  w  e. 
_V
21rabex 3922 . 2  |-  { x  e.  w  |  E. y ph }  e.  _V
3 repizf2lem 3935 . . . 4  |-  ( A. x  e.  w  E* y ph  <->  A. x  e.  {
x  e.  w  |  E. y ph } E! y ph )
4 nfcv 2219 . . . . . 6  |-  F/_ x
v
5 nfrab1 2533 . . . . . 6  |-  F/_ x { x  e.  w  |  E. y ph }
64, 5raleqf 2545 . . . . 5  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  v  E! y ph  <->  A. x  e.  {
x  e.  w  |  E. y ph } E! y ph ) )
7 repizf2.1 . . . . . 6  |-  F/ z
ph
87repizf 3894 . . . . 5  |-  ( A. x  e.  v  E! y ph  ->  E. z A. x  e.  v  E. y  e.  z  ph )
96, 8syl6bir 162 . . . 4  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  { x  e.  w  |  E. y ph } E! y
ph  ->  E. z A. x  e.  v  E. y  e.  z  ph ) )
103, 9syl5bi 150 . . 3  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  v  E. y  e.  z  ph ) )
11 df-rab 2357 . . . . . 6  |-  { x  e.  w  |  E. y ph }  =  {
x  |  ( x  e.  w  /\  E. y ph ) }
12 nfv 1461 . . . . . . . 8  |-  F/ z  x  e.  w
137nfex 1568 . . . . . . . 8  |-  F/ z E. y ph
1412, 13nfan 1497 . . . . . . 7  |-  F/ z ( x  e.  w  /\  E. y ph )
1514nfab 2223 . . . . . 6  |-  F/_ z { x  |  (
x  e.  w  /\  E. y ph ) }
1611, 15nfcxfr 2216 . . . . 5  |-  F/_ z { x  e.  w  |  E. y ph }
1716nfeq2 2230 . . . 4  |-  F/ z  v  =  { x  e.  w  |  E. y ph }
184, 5raleqf 2545 . . . 4  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  v  E. y  e.  z  ph  <->  A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph ) )
1917, 18exbid 1547 . . 3  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( E. z A. x  e.  v  E. y  e.  z 
ph 
<->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph ) )
2010, 19sylibd 147 . 2  |-  ( v  =  { x  e.  w  |  E. y ph }  ->  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph ) )
212, 20vtocle 2672 1  |-  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   F/wnf 1389   E.wex 1421   E!weu 1941   E*wmo 1942   {cab 2067   A.wral 2348   E.wrex 2349   {crab 2352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357  df-v 2603  df-in 2979  df-ss 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator