| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reuhypd | Unicode version | ||
| Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.) |
| Ref | Expression |
|---|---|
| reuhypd.1 |
|
| reuhypd.2 |
|
| Ref | Expression |
|---|---|
| reuhypd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuhypd.1 |
. . . . 5
| |
| 2 | elex 2610 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | eueq 2763 |
. . . 4
| |
| 5 | 3, 4 | sylib 120 |
. . 3
|
| 6 | eleq1 2141 |
. . . . . . 7
| |
| 7 | 1, 6 | syl5ibrcom 155 |
. . . . . 6
|
| 8 | 7 | pm4.71rd 386 |
. . . . 5
|
| 9 | reuhypd.2 |
. . . . . . 7
| |
| 10 | 9 | 3expa 1138 |
. . . . . 6
|
| 11 | 10 | pm5.32da 439 |
. . . . 5
|
| 12 | 8, 11 | bitr4d 189 |
. . . 4
|
| 13 | 12 | eubidv 1949 |
. . 3
|
| 14 | 5, 13 | mpbid 145 |
. 2
|
| 15 | df-reu 2355 |
. 2
| |
| 16 | 14, 15 | sylibr 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-reu 2355 df-v 2603 |
| This theorem is referenced by: reuhyp 4222 |
| Copyright terms: Public domain | W3C validator |