| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reuind | Unicode version | ||
| Description: Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010.) |
| Ref | Expression |
|---|---|
| reuind.1 |
|
| reuind.2 |
|
| Ref | Expression |
|---|---|
| reuind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuind.2 |
. . . . . . . 8
| |
| 2 | 1 | eleq1d 2147 |
. . . . . . 7
|
| 3 | reuind.1 |
. . . . . . 7
| |
| 4 | 2, 3 | anbi12d 456 |
. . . . . 6
|
| 5 | 4 | cbvexv 1836 |
. . . . 5
|
| 6 | r19.41v 2510 |
. . . . . . 7
| |
| 7 | 6 | exbii 1536 |
. . . . . 6
|
| 8 | rexcom4 2622 |
. . . . . 6
| |
| 9 | risset 2394 |
. . . . . . . 8
| |
| 10 | 9 | anbi1i 445 |
. . . . . . 7
|
| 11 | 10 | exbii 1536 |
. . . . . 6
|
| 12 | 7, 8, 11 | 3bitr4ri 211 |
. . . . 5
|
| 13 | 5, 12 | bitri 182 |
. . . 4
|
| 14 | eqeq2 2090 |
. . . . . . . . . 10
| |
| 15 | 14 | imim2i 12 |
. . . . . . . . 9
|
| 16 | bi2 128 |
. . . . . . . . . . 11
| |
| 17 | 16 | imim2i 12 |
. . . . . . . . . 10
|
| 18 | an31 528 |
. . . . . . . . . . . 12
| |
| 19 | 18 | imbi1i 236 |
. . . . . . . . . . 11
|
| 20 | impexp 259 |
. . . . . . . . . . 11
| |
| 21 | impexp 259 |
. . . . . . . . . . 11
| |
| 22 | 19, 20, 21 | 3bitr3i 208 |
. . . . . . . . . 10
|
| 23 | 17, 22 | sylib 120 |
. . . . . . . . 9
|
| 24 | 15, 23 | syl 14 |
. . . . . . . 8
|
| 25 | 24 | 2alimi 1385 |
. . . . . . 7
|
| 26 | 19.23v 1804 |
. . . . . . . . . 10
| |
| 27 | an12 525 |
. . . . . . . . . . . . . 14
| |
| 28 | eleq1 2141 |
. . . . . . . . . . . . . . . 16
| |
| 29 | 28 | adantr 270 |
. . . . . . . . . . . . . . 15
|
| 30 | 29 | pm5.32ri 442 |
. . . . . . . . . . . . . 14
|
| 31 | 27, 30 | bitr4i 185 |
. . . . . . . . . . . . 13
|
| 32 | 31 | exbii 1536 |
. . . . . . . . . . . 12
|
| 33 | 19.42v 1827 |
. . . . . . . . . . . 12
| |
| 34 | 32, 33 | bitri 182 |
. . . . . . . . . . 11
|
| 35 | 34 | imbi1i 236 |
. . . . . . . . . 10
|
| 36 | 26, 35 | bitri 182 |
. . . . . . . . 9
|
| 37 | 36 | albii 1399 |
. . . . . . . 8
|
| 38 | 19.21v 1794 |
. . . . . . . 8
| |
| 39 | 37, 38 | bitri 182 |
. . . . . . 7
|
| 40 | 25, 39 | sylib 120 |
. . . . . 6
|
| 41 | 40 | expd 254 |
. . . . 5
|
| 42 | 41 | reximdvai 2461 |
. . . 4
|
| 43 | 13, 42 | syl5bi 150 |
. . 3
|
| 44 | 43 | imp 122 |
. 2
|
| 45 | pm4.24 387 |
. . . . . . . . 9
| |
| 46 | 45 | biimpi 118 |
. . . . . . . 8
|
| 47 | prth 336 |
. . . . . . . 8
| |
| 48 | eqtr3 2100 |
. . . . . . . 8
| |
| 49 | 46, 47, 48 | syl56 34 |
. . . . . . 7
|
| 50 | 49 | alanimi 1388 |
. . . . . 6
|
| 51 | 19.23v 1804 |
. . . . . . . 8
| |
| 52 | 51 | biimpi 118 |
. . . . . . 7
|
| 53 | 52 | com12 30 |
. . . . . 6
|
| 54 | 50, 53 | syl5 32 |
. . . . 5
|
| 55 | 54 | a1d 22 |
. . . 4
|
| 56 | 55 | ralrimivv 2442 |
. . 3
|
| 57 | 56 | adantl 271 |
. 2
|
| 58 | eqeq1 2087 |
. . . . 5
| |
| 59 | 58 | imbi2d 228 |
. . . 4
|
| 60 | 59 | albidv 1745 |
. . 3
|
| 61 | 60 | reu4 2786 |
. 2
|
| 62 | 44, 57, 61 | sylanbrc 408 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |