| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rmorex | Unicode version | ||
| Description: Double restricted quantification with "at most one," analogous to 2moex 2027. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2rmorex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2354 |
. . . . . . . 8
| |
| 2 | 1 | anbi2i 444 |
. . . . . . 7
|
| 3 | 2 | mobii 1978 |
. . . . . 6
|
| 4 | df-rmo 2356 |
. . . . . 6
| |
| 5 | 19.42v 1827 |
. . . . . . 7
| |
| 6 | 5 | mobii 1978 |
. . . . . 6
|
| 7 | 3, 4, 6 | 3bitr4i 210 |
. . . . 5
|
| 8 | 2moex 2027 |
. . . . 5
| |
| 9 | 7, 8 | sylbi 119 |
. . . 4
|
| 10 | an12 525 |
. . . . . 6
| |
| 11 | 10 | mobii 1978 |
. . . . 5
|
| 12 | 11 | albii 1399 |
. . . 4
|
| 13 | 9, 12 | sylib 120 |
. . 3
|
| 14 | moanimv 2016 |
. . . 4
| |
| 15 | 14 | albii 1399 |
. . 3
|
| 16 | 13, 15 | sylib 120 |
. 2
|
| 17 | df-ral 2353 |
. . 3
| |
| 18 | df-rmo 2356 |
. . . . 5
| |
| 19 | 18 | imbi2i 224 |
. . . 4
|
| 20 | 19 | albii 1399 |
. . 3
|
| 21 | 17, 20 | bitri 182 |
. 2
|
| 22 | 16, 21 | sylibr 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-ral 2353 df-rex 2354 df-rmo 2356 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |