| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexxfrd | Unicode version | ||
| Description: Transfer universal
quantification from a variable |
| Ref | Expression |
|---|---|
| ralxfrd.1 |
|
| ralxfrd.2 |
|
| ralxfrd.3 |
|
| Ref | Expression |
|---|---|
| rexxfrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1461 |
. . . . 5
| |
| 2 | 1 | 19.3 1486 |
. . . 4
|
| 3 | ralxfrd.2 |
. . . . 5
| |
| 4 | df-rex 2354 |
. . . . . . . 8
| |
| 5 | 19.29 1551 |
. . . . . . . . . 10
| |
| 6 | an12 525 |
. . . . . . . . . . 11
| |
| 7 | 6 | exbii 1536 |
. . . . . . . . . 10
|
| 8 | 5, 7 | sylib 120 |
. . . . . . . . 9
|
| 9 | df-rex 2354 |
. . . . . . . . 9
| |
| 10 | 8, 9 | sylibr 132 |
. . . . . . . 8
|
| 11 | 4, 10 | sylan2b 281 |
. . . . . . 7
|
| 12 | ralxfrd.3 |
. . . . . . . . . . 11
| |
| 13 | 12 | biimpd 142 |
. . . . . . . . . 10
|
| 14 | 13 | expimpd 355 |
. . . . . . . . 9
|
| 15 | 14 | ancomsd 265 |
. . . . . . . 8
|
| 16 | 15 | reximdv 2462 |
. . . . . . 7
|
| 17 | 11, 16 | syl5 32 |
. . . . . 6
|
| 18 | 17 | adantr 270 |
. . . . 5
|
| 19 | 3, 18 | mpan2d 418 |
. . . 4
|
| 20 | 2, 19 | syl5bir 151 |
. . 3
|
| 21 | 20 | rexlimdva 2477 |
. 2
|
| 22 | ralxfrd.1 |
. . . 4
| |
| 23 | 12 | adantlr 460 |
. . . 4
|
| 24 | 22, 23 | rspcedv 2705 |
. . 3
|
| 25 | 24 | rexlimdva 2477 |
. 2
|
| 26 | 21, 25 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 |
| This theorem is referenced by: rexxfr2d 4215 rexxfr 4218 |
| Copyright terms: Public domain | W3C validator |