ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabidva Unicode version

Theorem riotabidva 5504
Description: Equivalent wff's yield equal restricted class abstractions (deduction rule). (rabbidva 2592 analog.) (Contributed by NM, 17-Jan-2012.)
Hypothesis
Ref Expression
riotabidva.1  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
riotabidva  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem riotabidva
StepHypRef Expression
1 riotabidva.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
21pm5.32da 439 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  A  /\  ch ) ) )
32iotabidv 4908 . 2  |-  ( ph  ->  ( iota x ( x  e.  A  /\  ps ) )  =  ( iota x ( x  e.  A  /\  ch ) ) )
4 df-riota 5488 . 2  |-  ( iota_ x  e.  A  ps )  =  ( iota x
( x  e.  A  /\  ps ) )
5 df-riota 5488 . 2  |-  ( iota_ x  e.  A  ch )  =  ( iota x
( x  e.  A  /\  ch ) )
63, 4, 53eqtr4g 2138 1  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   iotacio 4885   iota_crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by:  riotabiia  5505  divfnzn  8706
  Copyright terms: Public domain W3C validator