HomeHome Intuitionistic Logic Explorer
Theorem List (p. 56 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5501-5600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremriotacl2 5501 Membership law for "the unique element in  A such that  ph."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph } )
 
Theoremriotacl 5502* Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
 
Theoremriotasbc 5503 Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
 
Theoremriotabidva 5504* Equivalent wff's yield equal restricted class abstractions (deduction rule). (rabbidva 2592 analog.) (Contributed by NM, 17-Jan-2012.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
 
Theoremriotabiia 5505 Equivalent wff's yield equal restricted iotas (inference rule). (rabbiia 2591 analog.) (Contributed by NM, 16-Jan-2012.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  A  ps )
 
Theoremriota1 5506* Property of restricted iota. Compare iota1 4901. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  ( iota_ x  e.  A  ph )  =  x ) )
 
Theoremriota1a 5507 Property of iota. (Contributed by NM, 23-Aug-2011.)
 |-  ( ( x  e.  A  /\  E! x  e.  A  ph )  ->  ( ph  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
 
Theoremriota2df 5508* A deduction version of riota2f 5509. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/_ x B )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ( ph  /\  x  =  B ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ( ph  /\ 
 E! x  e.  A  ps )  ->  ( ch  <->  (
 iota_ x  e.  A  ps )  =  B ) )
 
Theoremriota2f 5509* This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x B   &    |-  F/ x ps   &    |-  ( x  =  B  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  ( iota_ x  e.  A  ph )  =  B ) )
 
Theoremriota2 5510* This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.)
 |-  ( x  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  ( iota_ x  e.  A  ph )  =  B ) )
 
Theoremriotaprop 5511* Properties of a restricted definite description operator. Todo (df-riota 5488 update): can some uses of riota2f 5509 be shortened with this? (Contributed by NM, 23-Nov-2013.)
 |- 
 F/ x ps   &    |-  B  =  ( iota_ x  e.  A  ph )   &    |-  ( x  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  ->  ( B  e.  A  /\  ps ) )
 
Theoremriota5f 5512* A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  F/_ x B )   &    |-  ( ph  ->  B  e.  A )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( ps 
 <->  x  =  B ) )   =>    |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B )
 
Theoremriota5 5513* A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
 |-  ( ph  ->  B  e.  A )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  x  =  B ) )   =>    |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B )
 
Theoremriotass2 5514* Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)
 |-  ( ( ( A 
 C_  B  /\  A. x  e.  A  ( ph  ->  ps ) )  /\  ( E. x  e.  A  ph 
 /\  E! x  e.  B  ps ) )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ps ) )
 
Theoremriotass 5515* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph )
 )
 
Theoremmoriotass 5516* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
 |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E* x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph )
 )
 
Theoremsnriota 5517 A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
 |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  { ( iota_ x  e.  A  ph ) }
 )
 
Theoremeusvobj2 5518* Specify the same property in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  B  e.  _V   =>    |-  ( E! x E. y  e.  A  x  =  B  ->  ( E. y  e.  A  x  =  B  <->  A. y  e.  A  x  =  B )
 )
 
Theoremeusvobj1 5519* Specify the same object in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
 |-  B  e.  _V   =>    |-  ( E! x E. y  e.  A  x  =  B  ->  (
 iota x E. y  e.  A  x  =  B )  =  ( iota x
 A. y  e.  A  x  =  B )
 )
 
Theoremf1ofveu 5520* There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  ( F `  x )  =  C )
 
Theoremf1ocnvfv3 5521* Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  =  (
 iota_ x  e.  A  ( F `  x )  =  C ) )
 
Theoremriotaund 5522* Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
 |-  ( -.  E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  =  (/) )
 
Theoremacexmidlema 5523* Lemma for acexmid 5531. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( { (/) }  e.  A  -> 
 ph )
 
Theoremacexmidlemb 5524* Lemma for acexmid 5531. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( (/) 
 e.  B  ->  ph )
 
Theoremacexmidlemph 5525* Lemma for acexmid 5531. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( ph  ->  A  =  B )
 
Theoremacexmidlemab 5526* Lemma for acexmid 5531. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  (
 ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_
 v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
 )  =  { (/) } )  ->  -.  ph )
 
Theoremacexmidlemcase 5527* Lemma for acexmid 5531. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at  A equals  { (/) }, (2) the choice function evaluated at  B equals  (/), and (3) the choice function evaluated at  A equals 
(/) and the choice function evaluated at  B equals  { (/) }.

Because of the way we represent the choice function  y, the choice function evaluated at  A is  ( iota_ v  e.  A E. u  e.  y ( A  e.  u  /\  v  e.  u ) ) and the choice function evaluated at  B is  ( iota_ v  e.  B E. u  e.  y ( B  e.  u  /\  v  e.  u ) ). Other than the difference in notation these work just as  ( y `  A ) and  ( y `  B ) would if  y were a function as defined by df-fun 4924.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at  A equals  { (/) }, then  { (/) }  e.  A and likewise for  B.

(Contributed by Jim Kingdon, 7-Aug-2019.)

 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_
 v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
 )  =  { (/) } )
 ) )
 
Theoremacexmidlem1 5528* Lemma for acexmid 5531. List the cases identified in acexmidlemcase 5527 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
 
Theoremacexmidlem2 5529* Lemma for acexmid 5531. This builds on acexmidlem1 5528 by noting that every element of  C is inhabited.

(Note that  y is not quite a function in the df-fun 4924 sense because it uses ordered pairs as described in opthreg 4299 rather than df-op 3407).

The set  A is also found in onsucelsucexmidlem 4272.

(Contributed by Jim Kingdon, 5-Aug-2019.)

 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
 z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
 
Theoremacexmidlemv 5530* Lemma for acexmid 5531.

This is acexmid 5531 with additional distinct variable constraints, most notably between  ph and  x.

(Contributed by Jim Kingdon, 6-Aug-2019.)

 |- 
 E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )   =>    |-  ( ph  \/  -.  ph )
 
Theoremacexmid 5531* The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer] p. 483.

The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function  y provides a value when  z is inhabited (as opposed to non-empty as in some statements of the axiom of choice).

Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967).

(Contributed by Jim Kingdon, 4-Aug-2019.)

 |- 
 E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )   =>    |-  ( ph  \/  -.  ph )
 
2.6.10  Operations
 
Syntaxco 5532 Extend class notation to include the value of an operation  F (such as + ) for two arguments  A and  B. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous.
 class  ( A F B )
 
Syntaxcoprab 5533 Extend class notation to include class abstraction (class builder) of nested ordered pairs.
 class  { <. <. x ,  y >. ,  z >.  |  ph }
 
Syntaxcmpt2 5534 Extend the definition of a class to include maps-to notation for defining an operation via a rule.
 class  ( x  e.  A ,  y  e.  B  |->  C )
 
Definitiondf-ov 5535 Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation  F and its arguments  A and  B- will be useful for proving meaningful theorems. For example, if class  F is the operation + and arguments  A and  B are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes  A and/or  B are proper classes (i.e. are not sets); see ovprc1 5561 and ovprc2 5562. On the other hand, we often find uses for this definition when  F is a proper class.  F is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5536. (Contributed by NM, 28-Feb-1995.)
 |-  ( A F B )  =  ( F ` 
 <. A ,  B >. )
 
Definitiondf-oprab 5536* Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally  x,  y, and  z are distinct, although the definition doesn't strictly require it. See df-ov 5535 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpt2 5656. (Contributed by NM, 12-Mar-1995.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
 <. <. x ,  y >. ,  z >.  /\  ph ) }
 
Definitiondf-mpt2 5537* Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from  x ,  y (in  A  X.  B) to  B ( x ,  y )." An extension of df-mpt 3841 for two arguments. (Contributed by NM, 17-Feb-2008.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
 
Theoremoveq 5538 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( F  =  G  ->  ( A F B )  =  ( A G B ) )
 
Theoremoveq1 5539 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( A  =  B  ->  ( A F C )  =  ( B F C ) )
 
Theoremoveq2 5540 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( A  =  B  ->  ( C F A )  =  ( C F B ) )
 
Theoremoveq12 5541 Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveq1i 5542 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  A  =  B   =>    |-  ( A F C )  =  ( B F C )
 
Theoremoveq2i 5543 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  A  =  B   =>    |-  ( C F A )  =  ( C F B )
 
Theoremoveq12i 5544 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A F C )  =  ( B F D )
 
Theoremoveqi 5545 Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
 |-  A  =  B   =>    |-  ( C A D )  =  ( C B D )
 
Theoremoveq123i 5546 Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
 |-  A  =  C   &    |-  B  =  D   &    |-  F  =  G   =>    |-  ( A F B )  =  ( C G D )
 
Theoremoveq1d 5547 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A F C )  =  ( B F C ) )
 
Theoremoveq2d 5548 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C F A )  =  ( C F B ) )
 
Theoremoveqd 5549 Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C A D )  =  ( C B D ) )
 
Theoremoveq12d 5550 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveqan12d 5551 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveqan12rd 5552 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ps 
 /\  ph )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveq123d 5553 Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A F C )  =  ( B G D ) )
 
Theoremnfovd 5554 Deduction version of bound-variable hypothesis builder nfov 5555. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x F )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/_ x ( A F B ) )
 
Theoremnfov 5555 Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
 |-  F/_ x A   &    |-  F/_ x F   &    |-  F/_ x B   =>    |-  F/_ x ( A F B )
 
Theoremoprabidlem 5556* Slight elaboration of exdistrfor 1721. A lemma for oprabid 5557. (Contributed by Jim Kingdon, 15-Jan-2019.)
 |-  ( E. x E. y ( x  =  z  /\  ps )  ->  E. x ( x  =  z  /\  E. y ps ) )
 
Theoremoprabid 5557 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Although this theorem would be useful with a distinct variable constraint between  x,  y, and  z, we use ax-bndl 1439 to eliminate that constraint. (Contributed by Mario Carneiro, 20-Mar-2013.)
 |-  ( <. <. x ,  y >. ,  z >.  e.  { <.
 <. x ,  y >. ,  z >.  |  ph }  <->  ph )
 
Theoremfnovex 5558 The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
 |-  ( ( F  Fn  ( C  X.  D ) 
 /\  A  e.  C  /\  B  e.  D ) 
 ->  ( A F B )  e.  _V )
 
Theoremovexg 5559 Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
 |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X ) 
 ->  ( A F B )  e.  _V )
 
Theoremovprc 5560 The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 Rel  dom  F   =>    |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )
 
Theoremovprc1 5561 The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
 |- 
 Rel  dom  F   =>    |-  ( -.  A  e.  _V 
 ->  ( A F B )  =  (/) )
 
Theoremovprc2 5562 The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 Rel  dom  F   =>    |-  ( -.  B  e.  _V 
 ->  ( A F B )  =  (/) )
 
Theoremcsbov123g 5563 Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
 |-  ( A  e.  D  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) )
 
Theoremcsbov12g 5564* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F [_ A  /  x ]_ C ) )
 
Theoremcsbov1g 5565* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F C ) )
 
Theoremcsbov2g 5566* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B F C )  =  ( B F [_ A  /  x ]_ C ) )
 
Theoremrspceov 5567* A frequently used special case of rspc2ev 2715 for operation values. (Contributed by NM, 21-Mar-2007.)
 |-  ( ( C  e.  A  /\  D  e.  B  /\  S  =  ( C F D ) ) 
 ->  E. x  e.  A  E. y  e.  B  S  =  ( x F y ) )
 
Theoremfnotovb 5568 Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5236. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( F  Fn  ( A  X.  B ) 
 /\  C  e.  A  /\  D  e.  B ) 
 ->  ( ( C F D )  =  R  <->  <. C ,  D ,  R >.  e.  F ) )
 
Theoremopabbrex 5569* A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
 |-  ( ( V  e.  _V 
 /\  E  e.  _V )  ->  ( f ( V W E ) p  ->  th )
 )   &    |-  ( ( V  e.  _V 
 /\  E  e.  _V )  ->  { <. f ,  p >.  |  th }  e.  _V )   =>    |-  ( ( V  e.  _V 
 /\  E  e.  _V )  ->  { <. f ,  p >.  |  (
 f ( V W E ) p  /\  ps ) }  e.  _V )
 
Theorem0neqopab 5570 The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
 |- 
 -.  (/)  e.  { <. x ,  y >.  |  ph }
 
Theorembrabvv 5571* If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Jim Kingdon, 16-Jan-2019.)
 |-  ( X { <. x ,  y >.  |  ph } Y  ->  ( X  e.  _V  /\  Y  e.  _V ) )
 
Theoremdfoprab2 5572* Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  = 
 <. x ,  y >.  /\  ph ) }
 
Theoremreloprab 5573* An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.)
 |- 
 Rel  { <. <. x ,  y >. ,  z >.  |  ph }
 
Theoremnfoprab1 5574 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  F/_ x { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremnfoprab2 5575 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.)
 |-  F/_ y { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremnfoprab3 5576 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
 |-  F/_ z { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremnfoprab 5577* Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
 |- 
 F/ w ph   =>    |-  F/_ w { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremoprabbid 5578* Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  F/ z ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  {
 <. <. x ,  y >. ,  z >.  |  ps }  =  { <. <. x ,  y >. ,  z >.  |  ch } )
 
Theoremoprabbidv 5579* Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  {
 <. <. x ,  y >. ,  z >.  |  ps }  =  { <. <. x ,  y >. ,  z >.  |  ch } )
 
Theoremoprabbii 5580* Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( ph  <->  ps )   =>    |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z >.  |  ps }
 
Theoremssoprab2 5581 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4030. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
 |-  ( A. x A. y A. z ( ph  ->  ps )  ->  { <. <. x ,  y >. ,  z >.  |  ph }  C_  {
 <. <. x ,  y >. ,  z >.  |  ps } )
 
Theoremssoprab2b 5582 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4031. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
 |-  ( { <. <. x ,  y >. ,  z >.  | 
 ph }  C_  { <. <. x ,  y >. ,  z >.  |  ps }  <->  A. x A. y A. z ( ph  ->  ps ) )
 
Theoremeqoprab2b 5583 Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 4034. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. x ,  y >. ,  z >.  |  ps }  <->  A. x A. y A. z ( ph  <->  ps ) )
 
Theoremmpt2eq123 5584* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.)
 |-  ( ( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F ) )
 
Theoremmpt2eq12 5585* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( ( A  =  C  /\  B  =  D )  ->  ( x  e.  A ,  y  e.  B  |->  E )  =  ( x  e.  C ,  y  e.  D  |->  E ) )
 
Theoremmpt2eq123dva 5586* An equality deduction for the maps to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  E )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  C  =  F )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F ) )
 
Theoremmpt2eq123dv 5587* An equality deduction for the maps to notation. (Contributed by NM, 12-Sep-2011.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ph  ->  B  =  E )   &    |-  ( ph  ->  C  =  F )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F ) )
 
Theoremmpt2eq123i 5588 An equality inference for the maps to notation. (Contributed by NM, 15-Jul-2013.)
 |-  A  =  D   &    |-  B  =  E   &    |-  C  =  F   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )
 
Theoremmpt2eq3dva 5589* Slightly more general equality inference for the maps to notation. (Contributed by NM, 17-Oct-2013.)
 |-  ( ( ph  /\  x  e.  A  /\  y  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D ) )
 
Theoremmpt2eq3ia 5590 An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
 
Theoremnfmpt21 5591 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
 |-  F/_ x ( x  e.  A ,  y  e.  B  |->  C )
 
Theoremnfmpt22 5592 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
 |-  F/_ y ( x  e.  A ,  y  e.  B  |->  C )
 
Theoremnfmpt2 5593* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
 |-  F/_ z A   &    |-  F/_ z B   &    |-  F/_ z C   =>    |-  F/_ z ( x  e.  A ,  y  e.  B  |->  C )
 
Theoremmpt20 5594 A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
 |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  (/)
 
Theoremoprab4 5595* Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  (
 <. x ,  y >.  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }
 
Theoremcbvoprab1 5596* Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.)
 |- 
 F/ w ph   &    |-  F/ x ps   &    |-  ( x  =  w  ->  (
 ph 
 <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. w ,  y >. ,  z >.  |  ps }
 
Theoremcbvoprab2 5597* Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
 |- 
 F/ w ph   &    |-  F/ y ps   &    |-  ( y  =  w  ->  ( ph  <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. x ,  w >. ,  z >.  |  ps }
 
Theoremcbvoprab12 5598* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |- 
 F/ w ph   &    |-  F/ v ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. w ,  v >. ,  z >.  |  ps }
 
Theoremcbvoprab12v 5599* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
 |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. w ,  v >. ,  z >.  |  ps }
 
Theoremcbvoprab3 5600* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.)
 |- 
 F/ w ph   &    |-  F/ z ps   &    |-  ( z  =  w  ->  ( ph  <->  ps ) )   =>    |-  { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. x ,  y >. ,  w >.  |  ps }
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >