ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotav Unicode version

Theorem riotav 5493
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav  |-  ( iota_ x  e.  _V  ph )  =  ( iota x ph )

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 5488 . 2  |-  ( iota_ x  e.  _V  ph )  =  ( iota x
( x  e.  _V  /\ 
ph ) )
2 vex 2604 . . . 4  |-  x  e. 
_V
32biantrur 297 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43iotabii 4909 . 2  |-  ( iota
x ph )  =  ( iota x ( x  e.  _V  /\  ph ) )
51, 4eqtr4i 2104 1  |-  ( iota_ x  e.  _V  ph )  =  ( iota x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601   iotacio 4885   iota_crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator