![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riotav | GIF version |
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
riotav | ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 5488 | . 2 ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 2604 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 297 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | iotabii 4909 | . 2 ⊢ (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | eqtr4i 2104 | 1 ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ℩cio 4885 ℩crio 5487 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-uni 3602 df-iota 4887 df-riota 5488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |