ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ru Unicode version

Theorem ru 2814
Description: Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 
A  e.  _V, asserted that any collection of sets  A is a set i.e. belongs to the universe 
_V of all sets. In particular, by substituting  { x  |  x  e/  x } (the "Russell class") for  A, it asserted  { x  |  x  e/  x }  e.  _V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove  { x  |  x  e/  x }  e/  _V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that  A is a set only when it is smaller than some other set  B. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 3896. (Contributed by NM, 7-Aug-1994.)

Assertion
Ref Expression
ru  |-  { x  |  x  e/  x }  e/  _V

Proof of Theorem ru
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 pm5.19 654 . . . . . 6  |-  -.  (
y  e.  y  <->  -.  y  e.  y )
2 eleq1 2141 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  y  <->  y  e.  y ) )
3 df-nel 2340 . . . . . . . . 9  |-  ( x  e/  x  <->  -.  x  e.  x )
4 id 19 . . . . . . . . . . 11  |-  ( x  =  y  ->  x  =  y )
54, 4eleq12d 2149 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  x  <->  y  e.  y ) )
65notbid 624 . . . . . . . . 9  |-  ( x  =  y  ->  ( -.  x  e.  x  <->  -.  y  e.  y ) )
73, 6syl5bb 190 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e/  x  <->  -.  y  e.  y ) )
82, 7bibi12d 233 . . . . . . 7  |-  ( x  =  y  ->  (
( x  e.  y  <-> 
x  e/  x )  <->  ( y  e.  y  <->  -.  y  e.  y ) ) )
98spv 1781 . . . . . 6  |-  ( A. x ( x  e.  y  <->  x  e/  x
)  ->  ( y  e.  y  <->  -.  y  e.  y ) )
101, 9mto 620 . . . . 5  |-  -.  A. x ( x  e.  y  <->  x  e/  x
)
11 abeq2 2187 . . . . 5  |-  ( y  =  { x  |  x  e/  x }  <->  A. x ( x  e.  y  <->  x  e/  x
) )
1210, 11mtbir 628 . . . 4  |-  -.  y  =  { x  |  x  e/  x }
1312nex 1429 . . 3  |-  -.  E. y  y  =  {
x  |  x  e/  x }
14 isset 2605 . . 3  |-  ( { x  |  x  e/  x }  e.  _V  <->  E. y  y  =  {
x  |  x  e/  x } )
1513, 14mtbir 628 . 2  |-  -.  {
x  |  x  e/  x }  e.  _V
16 df-nel 2340 . 2  |-  ( { x  |  x  e/  x }  e/  _V  <->  -.  { x  |  x  e/  x }  e.  _V )
1715, 16mpbir 144 1  |-  { x  |  x  e/  x }  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 103   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067    e/ wnel 2339   _Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nel 2340  df-v 2603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator