| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb4or | Unicode version | ||
| Description: One direction of a simplified definition of substitution when variables are distinct. Similar to sb4 1753 but stronger in intuitionistic logic. (Contributed by Jim Kingdon, 2-Feb-2018.) |
| Ref | Expression |
|---|---|
| sb4or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equs5or 1751 |
. 2
| |
| 2 | nfe1 1425 |
. . . . . 6
| |
| 3 | nfa1 1474 |
. . . . . 6
| |
| 4 | 2, 3 | nfim 1504 |
. . . . 5
|
| 5 | 4 | nfri 1452 |
. . . 4
|
| 6 | sb1 1689 |
. . . . 5
| |
| 7 | 6 | imim1i 59 |
. . . 4
|
| 8 | 5, 7 | alrimih 1398 |
. . 3
|
| 9 | 8 | orim2i 710 |
. 2
|
| 10 | 1, 9 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
| This theorem is referenced by: sb4bor 1756 nfsb2or 1758 |
| Copyright terms: Public domain | W3C validator |