ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb2or Unicode version

Theorem nfsb2or 1758
Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1757 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.)
Assertion
Ref Expression
nfsb2or  |-  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph )

Proof of Theorem nfsb2or
StepHypRef Expression
1 sb4or 1754 . 2  |-  ( A. x  x  =  y  \/  A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
2 sb2 1690 . . . . . . 7  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
32a5i 1475 . . . . . 6  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x [ y  /  x ] ph )
43imim2i 12 . . . . 5  |-  ( ( [ y  /  x ] ph  ->  A. x
( x  =  y  ->  ph ) )  -> 
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
54alimi 1384 . . . 4  |-  ( A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
)  ->  A. x
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
6 df-nf 1390 . . . 4  |-  ( F/ x [ y  /  x ] ph  <->  A. x
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
75, 6sylibr 132 . . 3  |-  ( A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
)  ->  F/ x [ y  /  x ] ph )
87orim2i 710 . 2  |-  ( ( A. x  x  =  y  \/  A. x
( [ y  /  x ] ph  ->  A. x
( x  =  y  ->  ph ) ) )  ->  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph ) )
91, 8ax-mp 7 1  |-  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 661   A.wal 1282   F/wnf 1389   [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by:  sbequi  1760
  Copyright terms: Public domain W3C validator