| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcof2 | Unicode version | ||
| Description: Version of sbco 1883
where |
| Ref | Expression |
|---|---|
| sbcof2.1 |
|
| Ref | Expression |
|---|---|
| sbcof2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcof2.1 |
. . . . . . 7
| |
| 2 | 1 | hbsb3 1729 |
. . . . . 6
|
| 3 | 2 | sb6f 1724 |
. . . . 5
|
| 4 | 1 | sb6f 1724 |
. . . . . . 7
|
| 5 | 4 | imbi2i 224 |
. . . . . 6
|
| 6 | 5 | albii 1399 |
. . . . 5
|
| 7 | 3, 6 | bitri 182 |
. . . 4
|
| 8 | ax-11 1437 |
. . . . . . 7
| |
| 9 | equcomi 1632 |
. . . . . . . . . . 11
| |
| 10 | 9 | imim1i 59 |
. . . . . . . . . 10
|
| 11 | 10 | imim2i 12 |
. . . . . . . . 9
|
| 12 | 11 | pm2.43d 49 |
. . . . . . . 8
|
| 13 | 12 | alimi 1384 |
. . . . . . 7
|
| 14 | 8, 13 | syl6 33 |
. . . . . 6
|
| 15 | 14 | a2i 11 |
. . . . 5
|
| 16 | 15 | alimi 1384 |
. . . 4
|
| 17 | 7, 16 | sylbi 119 |
. . 3
|
| 18 | ax-i9 1463 |
. . . . 5
| |
| 19 | exim 1530 |
. . . . 5
| |
| 20 | 18, 19 | mpi 15 |
. . . 4
|
| 21 | ax-ial 1467 |
. . . . 5
| |
| 22 | 21 | 19.9h 1574 |
. . . 4
|
| 23 | 20, 22 | sylib 120 |
. . 3
|
| 24 | sb2 1690 |
. . 3
| |
| 25 | 17, 23, 24 | 3syl 17 |
. 2
|
| 26 | sb1 1689 |
. . . 4
| |
| 27 | simpl 107 |
. . . . . 6
| |
| 28 | 19.8a 1522 |
. . . . . 6
| |
| 29 | 27, 28 | jca 300 |
. . . . 5
|
| 30 | 29 | eximi 1531 |
. . . 4
|
| 31 | 9 | anim1i 333 |
. . . . . . . . 9
|
| 32 | 27, 31 | jca 300 |
. . . . . . . 8
|
| 33 | 32 | eximi 1531 |
. . . . . . 7
|
| 34 | ax11e 1717 |
. . . . . . 7
| |
| 35 | 33, 34 | syl5 32 |
. . . . . 6
|
| 36 | 35 | imdistani 433 |
. . . . 5
|
| 37 | 36 | eximi 1531 |
. . . 4
|
| 38 | 26, 30, 37 | 3syl 17 |
. . 3
|
| 39 | 2 | sb5f 1725 |
. . . 4
|
| 40 | 1 | sb5f 1725 |
. . . . . 6
|
| 41 | 40 | anbi2i 444 |
. . . . 5
|
| 42 | 41 | exbii 1536 |
. . . 4
|
| 43 | 39, 42 | bitri 182 |
. . 3
|
| 44 | 38, 43 | sylibr 132 |
. 2
|
| 45 | 25, 44 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: sbid2h 1770 |
| Copyright terms: Public domain | W3C validator |