ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equcomi Unicode version

Theorem equcomi 1632
Description: Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equcomi  |-  ( x  =  y  ->  y  =  x )

Proof of Theorem equcomi
StepHypRef Expression
1 equid 1629 . 2  |-  x  =  x
2 ax-8 1435 . 2  |-  ( x  =  y  ->  (
x  =  x  -> 
y  =  x ) )
31, 2mpi 15 1  |-  ( x  =  y  ->  y  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-gen 1378  ax-ie2 1423  ax-8 1435  ax-17 1459  ax-i9 1463
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  equcom  1633  equcoms  1634  ax10  1645  cbv2h  1674  equvini  1681  equveli  1682  equsb2  1709  drex1  1719  sbcof2  1731  aev  1733  cbvexdh  1842  rext  3970  iotaval  4898
  Copyright terms: Public domain W3C validator