ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimv Unicode version

Theorem spimv 1732
Description: A version of spim 1666 with a distinct variable requirement instead of a bound variable hypothesis. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spimv.1  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spimv  |-  ( A. x ph  ->  ps )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)

Proof of Theorem spimv
StepHypRef Expression
1 nfv 1461 . 2  |-  F/ x ps
2 spimv.1 . 2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
31, 2spim 1666 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  aev  1733  ax16i  1779  spv  1781  reu6  2781  el  3952
  Copyright terms: Public domain W3C validator