ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snon0 Unicode version

Theorem snon0 6387
Description: An ordinal which is a singleton is  { (/) }. (Contributed by Jim Kingdon, 19-Oct-2021.)
Assertion
Ref Expression
snon0  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  =  (/) )

Proof of Theorem snon0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elirr 4284 . . 3  |-  -.  A  e.  A
2 snidg 3423 . . . . . . 7  |-  ( A  e.  V  ->  A  e.  { A } )
32adantr 270 . . . . . 6  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  e.  { A } )
4 ontr1 4144 . . . . . . 7  |-  ( { A }  e.  On  ->  ( ( x  e.  A  /\  A  e. 
{ A } )  ->  x  e.  { A } ) )
54adantl 271 . . . . . 6  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( ( x  e.  A  /\  A  e.  { A } )  ->  x  e.  { A } ) )
63, 5mpan2d 418 . . . . 5  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  x  e.  { A } ) )
7 elsni 3416 . . . . 5  |-  ( x  e.  { A }  ->  x  =  A )
86, 7syl6 33 . . . 4  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  x  =  A ) )
9 eleq1 2141 . . . . 5  |-  ( x  =  A  ->  (
x  e.  A  <->  A  e.  A ) )
109biimpcd 157 . . . 4  |-  ( x  e.  A  ->  (
x  =  A  ->  A  e.  A )
)
118, 10sylcom 28 . . 3  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  ( x  e.  A  ->  A  e.  A ) )
121, 11mtoi 622 . 2  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  -.  x  e.  A )
1312eq0rdv 3288 1  |-  ( ( A  e.  V  /\  { A }  e.  On )  ->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   (/)c0 3251   {csn 3398   Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator