| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spc2egv | Unicode version | ||
| Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| spc2egv.1 |
|
| Ref | Expression |
|---|---|
| spc2egv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2613 |
. . . 4
| |
| 2 | elisset 2613 |
. . . 4
| |
| 3 | 1, 2 | anim12i 331 |
. . 3
|
| 4 | eeanv 1848 |
. . 3
| |
| 5 | 3, 4 | sylibr 132 |
. 2
|
| 6 | spc2egv.1 |
. . . 4
| |
| 7 | 6 | biimprcd 158 |
. . 3
|
| 8 | 7 | 2eximdv 1803 |
. 2
|
| 9 | 5, 8 | syl5com 29 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: spc2ev 2693 th3q 6234 addnnnq0 6639 mulnnnq0 6640 addsrpr 6922 mulsrpr 6923 |
| Copyright terms: Public domain | W3C validator |