| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addsrpr | Unicode version | ||
| Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| addsrpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 4394 |
. . . 4
| |
| 2 | enrex 6914 |
. . . . 5
| |
| 3 | 2 | ecelqsi 6183 |
. . . 4
|
| 4 | 1, 3 | syl 14 |
. . 3
|
| 5 | opelxpi 4394 |
. . . 4
| |
| 6 | 2 | ecelqsi 6183 |
. . . 4
|
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 4, 7 | anim12i 331 |
. 2
|
| 9 | eqid 2081 |
. . . 4
| |
| 10 | eqid 2081 |
. . . 4
| |
| 11 | 9, 10 | pm3.2i 266 |
. . 3
|
| 12 | eqid 2081 |
. . 3
| |
| 13 | opeq12 3572 |
. . . . . . . . 9
| |
| 14 | 13 | eceq1d 6165 |
. . . . . . . 8
|
| 15 | 14 | eqeq2d 2092 |
. . . . . . 7
|
| 16 | 15 | anbi1d 452 |
. . . . . 6
|
| 17 | simpl 107 |
. . . . . . . . . 10
| |
| 18 | 17 | oveq1d 5547 |
. . . . . . . . 9
|
| 19 | simpr 108 |
. . . . . . . . . 10
| |
| 20 | 19 | oveq1d 5547 |
. . . . . . . . 9
|
| 21 | 18, 20 | opeq12d 3578 |
. . . . . . . 8
|
| 22 | 21 | eceq1d 6165 |
. . . . . . 7
|
| 23 | 22 | eqeq2d 2092 |
. . . . . 6
|
| 24 | 16, 23 | anbi12d 456 |
. . . . 5
|
| 25 | 24 | spc2egv 2687 |
. . . 4
|
| 26 | opeq12 3572 |
. . . . . . . . . 10
| |
| 27 | 26 | eceq1d 6165 |
. . . . . . . . 9
|
| 28 | 27 | eqeq2d 2092 |
. . . . . . . 8
|
| 29 | 28 | anbi2d 451 |
. . . . . . 7
|
| 30 | simpl 107 |
. . . . . . . . . . 11
| |
| 31 | 30 | oveq2d 5548 |
. . . . . . . . . 10
|
| 32 | simpr 108 |
. . . . . . . . . . 11
| |
| 33 | 32 | oveq2d 5548 |
. . . . . . . . . 10
|
| 34 | 31, 33 | opeq12d 3578 |
. . . . . . . . 9
|
| 35 | 34 | eceq1d 6165 |
. . . . . . . 8
|
| 36 | 35 | eqeq2d 2092 |
. . . . . . 7
|
| 37 | 29, 36 | anbi12d 456 |
. . . . . 6
|
| 38 | 37 | spc2egv 2687 |
. . . . 5
|
| 39 | 38 | 2eximdv 1803 |
. . . 4
|
| 40 | 25, 39 | sylan9 401 |
. . 3
|
| 41 | 11, 12, 40 | mp2ani 422 |
. 2
|
| 42 | ecexg 6133 |
. . . 4
| |
| 43 | 2, 42 | ax-mp 7 |
. . 3
|
| 44 | simp1 938 |
. . . . . . . 8
| |
| 45 | 44 | eqeq1d 2089 |
. . . . . . 7
|
| 46 | simp2 939 |
. . . . . . . 8
| |
| 47 | 46 | eqeq1d 2089 |
. . . . . . 7
|
| 48 | 45, 47 | anbi12d 456 |
. . . . . 6
|
| 49 | simp3 940 |
. . . . . . 7
| |
| 50 | 49 | eqeq1d 2089 |
. . . . . 6
|
| 51 | 48, 50 | anbi12d 456 |
. . . . 5
|
| 52 | 51 | 4exbidv 1791 |
. . . 4
|
| 53 | addsrmo 6920 |
. . . 4
| |
| 54 | df-plr 6905 |
. . . . 5
| |
| 55 | df-nr 6904 |
. . . . . . . . 9
| |
| 56 | 55 | eleq2i 2145 |
. . . . . . . 8
|
| 57 | 55 | eleq2i 2145 |
. . . . . . . 8
|
| 58 | 56, 57 | anbi12i 447 |
. . . . . . 7
|
| 59 | 58 | anbi1i 445 |
. . . . . 6
|
| 60 | 59 | oprabbii 5580 |
. . . . 5
|
| 61 | 54, 60 | eqtri 2101 |
. . . 4
|
| 62 | 52, 53, 61 | ovig 5642 |
. . 3
|
| 63 | 43, 62 | mp3an3 1257 |
. 2
|
| 64 | 8, 41, 63 | sylc 61 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-iplp 6658 df-enr 6903 df-nr 6904 df-plr 6905 |
| This theorem is referenced by: addclsr 6930 addcomsrg 6932 addasssrg 6933 distrsrg 6936 m1p1sr 6937 0idsr 6944 ltasrg 6947 prsradd 6962 pitonnlem2 7015 |
| Copyright terms: Public domain | W3C validator |