| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spc3gv | Unicode version | ||
| Description: Specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
| Ref | Expression |
|---|---|
| spc3egv.1 |
|
| Ref | Expression |
|---|---|
| spc3gv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2613 |
. . . 4
| |
| 2 | elisset 2613 |
. . . 4
| |
| 3 | elisset 2613 |
. . . 4
| |
| 4 | 1, 2, 3 | 3anim123i 1123 |
. . 3
|
| 5 | eeeanv 1849 |
. . 3
| |
| 6 | 4, 5 | sylibr 132 |
. 2
|
| 7 | spc3egv.1 |
. . . . . . . 8
| |
| 8 | 7 | biimpcd 157 |
. . . . . . 7
|
| 9 | 8 | 2alimi 1385 |
. . . . . 6
|
| 10 | 9 | alimi 1384 |
. . . . 5
|
| 11 | exim 1530 |
. . . . . 6
| |
| 12 | 11 | 2alimi 1385 |
. . . . 5
|
| 13 | 10, 12 | syl 14 |
. . . 4
|
| 14 | exim 1530 |
. . . . 5
| |
| 15 | 14 | alimi 1384 |
. . . 4
|
| 16 | exim 1530 |
. . . 4
| |
| 17 | 13, 15, 16 | 3syl 17 |
. . 3
|
| 18 | 19.9v 1792 |
. . . 4
| |
| 19 | 19.9v 1792 |
. . . 4
| |
| 20 | 19.9v 1792 |
. . . 4
| |
| 21 | 18, 19, 20 | 3bitri 204 |
. . 3
|
| 22 | 17, 21 | syl6ib 159 |
. 2
|
| 23 | 6, 22 | syl5com 29 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: funopg 4954 |
| Copyright terms: Public domain | W3C validator |