| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funopg | Unicode version | ||
| Description: A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| funopg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3570 |
. . . . 5
| |
| 2 | 1 | funeqd 4943 |
. . . 4
|
| 3 | eqeq1 2087 |
. . . 4
| |
| 4 | 2, 3 | imbi12d 232 |
. . 3
|
| 5 | opeq2 3571 |
. . . . 5
| |
| 6 | 5 | funeqd 4943 |
. . . 4
|
| 7 | eqeq2 2090 |
. . . 4
| |
| 8 | 6, 7 | imbi12d 232 |
. . 3
|
| 9 | funrel 4939 |
. . . . 5
| |
| 10 | vex 2604 |
. . . . . 6
| |
| 11 | vex 2604 |
. . . . . 6
| |
| 12 | 10, 11 | relop 4504 |
. . . . 5
|
| 13 | 9, 12 | sylib 120 |
. . . 4
|
| 14 | 10, 11 | opth 3992 |
. . . . . . . 8
|
| 15 | vex 2604 |
. . . . . . . . . . . 12
| |
| 16 | 15 | opid 3588 |
. . . . . . . . . . 11
|
| 17 | 16 | preq1i 3472 |
. . . . . . . . . 10
|
| 18 | vex 2604 |
. . . . . . . . . . . 12
| |
| 19 | 15, 18 | dfop 3569 |
. . . . . . . . . . 11
|
| 20 | 19 | preq2i 3473 |
. . . . . . . . . 10
|
| 21 | 15 | snex 3957 |
. . . . . . . . . . 11
|
| 22 | zfpair2 3965 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | dfop 3569 |
. . . . . . . . . 10
|
| 24 | 17, 20, 23 | 3eqtr4ri 2112 |
. . . . . . . . 9
|
| 25 | 24 | eqeq2i 2091 |
. . . . . . . 8
|
| 26 | 14, 25 | bitr3i 184 |
. . . . . . 7
|
| 27 | dffun4 4933 |
. . . . . . . . 9
| |
| 28 | 27 | simprbi 269 |
. . . . . . . 8
|
| 29 | 15, 15 | opex 3984 |
. . . . . . . . . . 11
|
| 30 | 29 | prid1 3498 |
. . . . . . . . . 10
|
| 31 | eleq2 2142 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | mpbiri 166 |
. . . . . . . . 9
|
| 33 | 15, 18 | opex 3984 |
. . . . . . . . . . 11
|
| 34 | 33 | prid2 3499 |
. . . . . . . . . 10
|
| 35 | eleq2 2142 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | mpbiri 166 |
. . . . . . . . 9
|
| 37 | 32, 36 | jca 300 |
. . . . . . . 8
|
| 38 | opeq12 3572 |
. . . . . . . . . . . . . 14
| |
| 39 | 38 | 3adant3 958 |
. . . . . . . . . . . . 13
|
| 40 | 39 | eleq1d 2147 |
. . . . . . . . . . . 12
|
| 41 | opeq12 3572 |
. . . . . . . . . . . . . 14
| |
| 42 | 41 | 3adant2 957 |
. . . . . . . . . . . . 13
|
| 43 | 42 | eleq1d 2147 |
. . . . . . . . . . . 12
|
| 44 | 40, 43 | anbi12d 456 |
. . . . . . . . . . 11
|
| 45 | eqeq12 2093 |
. . . . . . . . . . . 12
| |
| 46 | 45 | 3adant1 956 |
. . . . . . . . . . 11
|
| 47 | 44, 46 | imbi12d 232 |
. . . . . . . . . 10
|
| 48 | 47 | spc3gv 2690 |
. . . . . . . . 9
|
| 49 | 15, 15, 18, 48 | mp3an 1268 |
. . . . . . . 8
|
| 50 | 28, 37, 49 | syl2im 38 |
. . . . . . 7
|
| 51 | 26, 50 | syl5bi 150 |
. . . . . 6
|
| 52 | dfsn2 3412 |
. . . . . . . . . . 11
| |
| 53 | preq2 3470 |
. . . . . . . . . . 11
| |
| 54 | 52, 53 | syl5req 2126 |
. . . . . . . . . 10
|
| 55 | 54 | eqeq2d 2092 |
. . . . . . . . 9
|
| 56 | eqtr3 2100 |
. . . . . . . . . 10
| |
| 57 | 56 | expcom 114 |
. . . . . . . . 9
|
| 58 | 55, 57 | syl6bi 161 |
. . . . . . . 8
|
| 59 | 58 | com13 79 |
. . . . . . 7
|
| 60 | 59 | imp 122 |
. . . . . 6
|
| 61 | 51, 60 | sylcom 28 |
. . . . 5
|
| 62 | 61 | exlimdvv 1818 |
. . . 4
|
| 63 | 13, 62 | mpd 13 |
. . 3
|
| 64 | 4, 8, 63 | vtocl2g 2662 |
. 2
|
| 65 | 64 | 3impia 1135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-fun 4924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |