ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimegft Unicode version

Theorem spcimegft 2676
Description: A closed version of spcimegf 2679. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1  |-  F/ x ps
spcimgft.2  |-  F/_ x A
Assertion
Ref Expression
spcimegft  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  B  ->  ( ps  ->  E. x ph ) ) )

Proof of Theorem spcimegft
StepHypRef Expression
1 elex 2610 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 spcimgft.2 . . . . 5  |-  F/_ x A
32issetf 2606 . . . 4  |-  ( A  e.  _V  <->  E. x  x  =  A )
4 exim 1530 . . . 4  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( E. x  x  =  A  ->  E. x
( ps  ->  ph )
) )
53, 4syl5bi 150 . . 3  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  _V  ->  E. x ( ps 
->  ph ) ) )
6 spcimgft.1 . . . 4  |-  F/ x ps
7619.37-1 1604 . . 3  |-  ( E. x ( ps  ->  ph )  ->  ( ps  ->  E. x ph )
)
85, 7syl6 33 . 2  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  _V  ->  ( ps  ->  E. x ph ) ) )
91, 8syl5 32 1  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1282    = wceq 1284   F/wnf 1389   E.wex 1421    e. wcel 1433   F/_wnfc 2206   _Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603
This theorem is referenced by:  spcegft  2677  spcimegf  2679  spcimedv  2684
  Copyright terms: Public domain W3C validator