| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reu6 | Unicode version | ||
| Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.) |
| Ref | Expression |
|---|---|
| reu6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 2355 |
. 2
| |
| 2 | 19.28v 1821 |
. . . . 5
| |
| 3 | eleq1 2141 |
. . . . . . . . . . . 12
| |
| 4 | sbequ12 1694 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | anbi12d 456 |
. . . . . . . . . . 11
|
| 6 | equequ1 1638 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | bibi12d 233 |
. . . . . . . . . 10
|
| 8 | equid 1629 |
. . . . . . . . . . . 12
| |
| 9 | 8 | tbt 245 |
. . . . . . . . . . 11
|
| 10 | simpl 107 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | sylbir 133 |
. . . . . . . . . 10
|
| 12 | 7, 11 | syl6bi 161 |
. . . . . . . . 9
|
| 13 | 12 | spimv 1732 |
. . . . . . . 8
|
| 14 | bi1 116 |
. . . . . . . . . . . 12
| |
| 15 | 14 | expdimp 255 |
. . . . . . . . . . 11
|
| 16 | bi2 128 |
. . . . . . . . . . . . 13
| |
| 17 | simpr 108 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | syl6 33 |
. . . . . . . . . . . 12
|
| 19 | 18 | adantr 270 |
. . . . . . . . . . 11
|
| 20 | 15, 19 | impbid 127 |
. . . . . . . . . 10
|
| 21 | 20 | ex 113 |
. . . . . . . . 9
|
| 22 | 21 | sps 1470 |
. . . . . . . 8
|
| 23 | 13, 22 | jca 300 |
. . . . . . 7
|
| 24 | 23 | a5i 1475 |
. . . . . 6
|
| 25 | bi1 116 |
. . . . . . . . . . 11
| |
| 26 | 25 | imim2i 12 |
. . . . . . . . . 10
|
| 27 | 26 | impd 251 |
. . . . . . . . 9
|
| 28 | 27 | adantl 271 |
. . . . . . . 8
|
| 29 | eleq1a 2150 |
. . . . . . . . . . . 12
| |
| 30 | 29 | adantr 270 |
. . . . . . . . . . 11
|
| 31 | 30 | imp 122 |
. . . . . . . . . 10
|
| 32 | bi2 128 |
. . . . . . . . . . . . . 14
| |
| 33 | 32 | imim2i 12 |
. . . . . . . . . . . . 13
|
| 34 | 33 | com23 77 |
. . . . . . . . . . . 12
|
| 35 | 34 | imp 122 |
. . . . . . . . . . 11
|
| 36 | 35 | adantll 459 |
. . . . . . . . . 10
|
| 37 | 31, 36 | jcai 304 |
. . . . . . . . 9
|
| 38 | 37 | ex 113 |
. . . . . . . 8
|
| 39 | 28, 38 | impbid 127 |
. . . . . . 7
|
| 40 | 39 | alimi 1384 |
. . . . . 6
|
| 41 | 24, 40 | impbii 124 |
. . . . 5
|
| 42 | df-ral 2353 |
. . . . . 6
| |
| 43 | 42 | anbi2i 444 |
. . . . 5
|
| 44 | 2, 41, 43 | 3bitr4i 210 |
. . . 4
|
| 45 | 44 | exbii 1536 |
. . 3
|
| 46 | df-eu 1944 |
. . 3
| |
| 47 | df-rex 2354 |
. . 3
| |
| 48 | 45, 46, 47 | 3bitr4i 210 |
. 2
|
| 49 | 1, 48 | bitri 182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-eu 1944 df-cleq 2074 df-clel 2077 df-ral 2353 df-rex 2354 df-reu 2355 |
| This theorem is referenced by: reu3 2782 reu6i 2783 reu8 2788 |
| Copyright terms: Public domain | W3C validator |