| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > sscoll2 | Unicode version | ||
| Description: Version of ax-sscoll 10782 with two DV conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| sscoll2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1461 |
. . 3
| |
| 2 | nfv 1461 |
. . . 4
| |
| 3 | simpl 107 |
. . . . . 6
| |
| 4 | rexeq 2550 |
. . . . . . 7
| |
| 5 | 4 | adantl 271 |
. . . . . 6
|
| 6 | 3, 5 | raleqbidv 2561 |
. . . . 5
|
| 7 | nfv 1461 |
. . . . . 6
| |
| 8 | nfv 1461 |
. . . . . . 7
| |
| 9 | rexeq 2550 |
. . . . . . . . 9
| |
| 10 | 9 | adantr 270 |
. . . . . . . 8
|
| 11 | 10 | bibi2d 230 |
. . . . . . 7
|
| 12 | 8, 11 | albid 1546 |
. . . . . 6
|
| 13 | 7, 12 | rexbid 2367 |
. . . . 5
|
| 14 | 6, 13 | imbi12d 232 |
. . . 4
|
| 15 | 2, 14 | albid 1546 |
. . 3
|
| 16 | 1, 15 | exbid 1547 |
. 2
|
| 17 | ax-sscoll 10782 |
. . . 4
| |
| 18 | 17 | spi 1469 |
. . 3
|
| 19 | 18 | spi 1469 |
. 2
|
| 20 | 16, 19 | ch2varv 10579 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sscoll 10782 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |